This CVPR2013 paper is the Open Access version, provided by the Computer Vision Foundation.

The authoritative version of this paper is available in IEEE Xplore.

A Video Representation Using Temporal Superpixels

Jason Chang
CSAIL, MIT

jchang7@csail . .mit.edu

Abstract

We develop a generative probabilistic model for tempo-
rally consistent superpixels in video sequences. In con-
trast to supervoxel methods, object parts in different frames
are tracked by the same temporal superpixel. We explicitly
model flow between frames with a bilateral Gaussian pro-
cess and use this information to propagate superpixels in an
online fashion. We consider four novel metrics to quantify
performance of a temporal superpixel representation and
demonstrate superior performance when compared to su-
pervoxel methods.

1. Introduction

Since their inception in the work of Ren and Malik [ 18],
superpixels have become an important preprocessing step
in many vision systems (e.g. [7, 8, 18]). Though many
algorithms operate at the pixel level it is generally more ef-
ficient to process higher-level representations. For example,
one can reduce the hundreds of thousands of pixels to hun-
dreds (or thousands) of superpixels while still maintaining
very accurate boundaries of objects.

Many video analysis applications begin by inferring tem-
poral correspondences across frames. This can be done for
a sparse number of locations with point trackers (e.g. [13])
or over the dense pixels with optical flow (e.g. [10]). For
example, structure from motion typically tracks features to
solve the correspondence of points within two frames and
video segmentation algorithms (e.g. [8]) often use optical
flow to relate segments between two frames. More recently,
[5] and [19] use optical flow to obtain robust long-term
point trajectories. By clustering these points based on mo-
tion, one can obtain a sparse video segmentation [4]. Fur-
thermore, [16] develops a method to extend the sparse seg-
mentation in a single frame to a dense segmentation with
the help of superpixels.

Inspired by these previous methods, our primary focus
is to develop a representation for videos that parallels the
superpixel representation in images. We call these new ele-
mentary components, temporal superpixels (TSPs). Unlike
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Figure 1: Example of TSPs obtained using our model. No-
tice that the same TSPs across the frames track the same
points on the parachute and rock. While only a subset of
TSPs are shown, each frame is entirely segmented. Color-
ing of TSPs is done by hand to illustrate correspondence.

[4], applying a motion-based clustering algorithm on TSPs
instead of points directly yields a dense video segmentation
without using [16].

In the seminal work of [18], Ren and Malik define a
superpixel as a set of pixels that are “local, coherent, and
which preserve most of the structure necessary for segmen-
tation”. We similarly define a TSP as a set of video pixels
that are local in space and track the same part of an object
across time. Consequently, intra-frame TSPs should repre-
sent a superpixel segmentation of the frame. Example TSPs
are shown in Figure 1. We believe that the TSP representa-
tion bridges the gap between superpixels and videos.

A temporal superpixels are closely related to supervox-
els. TSPs, however, are tailored to video data, whereas su-
pervoxels are designed for 3D volumetric data. Supervoxel
methods [24] process videos by treating the time dimension
as a spatial dimension. While this may work well for actual
volumetric data (e.g. in medical imaging), it does not rep-
resent videos well. For example, though one often assumes
that each voxel in a volume is closely related to its 26 3D
neighbors, the same relationship does not exist in videos
with non-negligible motion. In fact, objects that are moving
quickly may not even overlap in adjacent frames of a video.

Treating the temporal dimension differently is certainly
not a new idea in the literature. Optical flow is commonly
used as a measurement to aid object tracking or segmenta-
tion. For example, the work of [8] connects nodes in a 3D
graph along flow vectors to produce oversegmentations of
the video. As we discuss in Section 2, however, these over-
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Figure 2: Example hierarchy of oversegmentations, ranging
from object segmentation (left) to superpixels (right).

segmentations can violate the locality assumption of super-
pixels. Lastly, our work differs from [8] by explicitly mod-
eling flow as a latent variable and inferring its value.

This work is also closely related to [27], which consid-
ers jointly estimating an oversegmentation and flow. The
key differences are that [27] does not explicitly handle oc-
clusions/disocclusions, enforces a very limiting temporal
smoothness term, and must process an entire volume of data
at once. While preliminary results in [27] look promising,
we believe these three factors limit the method from per-
forming well on different videos or long sequences.

We believe that this new type of representation has util-
ity in many computer vision tasks. Various algorithms (e.g.
[23]) run off-the-shelf superpixel algorithms independently
on frames of a video, producing superpixels that are un-
related across time. Following this, complex methods are
utilized to solve for correspondences between two indepen-
dently segmented frames. By using a slightly richer repre-
sentation, a TSP representation can mitigate the complex-
ity of many segmentation and tracking algorithms. Addi-
tionally, to our knowledge, there has yet to be any gener-
ative, probabilistic models to represent superpixels. Many
commonly used superpixel algorithms (e.g. [7, 15, 18, 26])
formulate the superpixel problem on an affinity graph and
solve the spectral clustering problem with graph cuts. Other
algorithms (e.g. [1, 1 1]) formulate the problem as an energy
minimization problem and perform gradient descent to find
a solution. As we shall see, the proposed generative model
of TSPs in videos reduces to a generative superpixel model
in a single frame.

In the sequel, we develop a model of TSPs. In con-
trast to supervoxel methods ([25] being a notable excep-
tion) the proposed TSP approach infers superpixels using
only past and current frames and thus scales linearly with
video length. We consider novel metrics that evaluate de-
sired traits of TSPs, and quantitatively show that our method
outperforms the supervoxel methods presented in [24].

2. TSPs vs. Oversegmentations

We begin with a more precise description of a temporal
superpixel. Superpixel representations reduce the number
of variables by orders of magnitude while often maintain-
ing the most salient features of an image. For example, an
image can be approximated by setting each superpixel to a
constant color. We desire to have the same representative
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Figure 3: An example of using [8] (left) versus the TSP
method (right). Both algorithms have approximately 700
segments. Notice that the majority of the background on
the left is grouped into a single segment whereas the TSPs
evenly divide up the image into local segments.

power with TSPs. For example, in videos, one may want to
approximate the flow between frames with a constant trans-
lation for each superpixel, as is done in [27]. Intra-frame
TSPs should therefore form a superpixel segmentation. Ad-
ditionally, as is commonly enforced with superpixels, the
spatial support of a TSP in any frame should be a single
connected component.

As shown in Figure 2, there are many valid oversegmen-
tations for a given image. While the terms “oversegmen-
tation” and “superpixel segmentation” are commonly used
interchangeably, we suggest that they are quite different. A
superpixel segmentation is an oversegmentation that pre-
serves the salient features of a pixel-based representation.
Figure 3 shows an example of the finest oversegmentation
produced using [8] compared with a TSP representation at
the same granularity. This example illustrates the difference
between oversegmentations and superpixels. Describing the
motion of each small superpixel as a translation may be a
suitable approximation, but doing so for the entire back-
ground may introduce much larger errors.

3. Initializing TSPs

In this section, we discuss the inference of TSPs for the
first frame. Because intra-frame TSPs are superpixels, we
will often refer to these terms interchangeably. Given the
vast literature on superpixel methods, we focus on those
that most closely relate to the proposed method. The recent
work of [1] presents an extremely fast superpixel algorithm
called Simple Linear Iterative Clustering (SLIC). As shown
by the authors, SLIC rivals other state-of-the-art superpixel
techniques in preserving boundaries on the Berkeley Seg-
mentation Dataset [ | 4] while achieving orders of magnitude
in speed gains. After briefly reviewing SLIC, we present
the TSP model for a single frame and extend it to multiple
frames in Section 4.

3.1. Simple Linear Iterative Clustering

SLIC assigns a 5-dimensional feature vector to each
pixel, composed of x- and y-location, and the three compo-
nents of the Lab colorspace. The algorithm consists of two
steps: (1) perform k-means clustering for a fixed number
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of iterations; and (2) eliminate single-pixel superpixels and
enforce that each superpixel is a single 4-connected region.
While not explicitly stated in [1], the first step of SLIC can
be formulated as a Gaussian mixture model with the graph-
ical model in Figure 4a, where z; is the associated cluster
label assigned to pixel 4, a; is the Lab color, ¢; is the lo-
cation, and pf and pf; are the mean parameters for cluster
k. We note that the second step of SLIC is not easily repre-
sented as inference in a graphical model.

3.2. A Generative Model for Superpixels

Utilizing digital topology concepts, we formulate a sim-
ilar model without the need for post-processing. Specifi-
cally, if a single pixel changes, the topology of the binary
object changes if and only if that pixel is not a simple point.
Checking if a pixel is a simple point can be done in constant
time [3], allowing efficient incorporation into inference pro-
cedures [9]. If a binary object does not change in topology,
the connectivity also does not change, making it directly
applicable to superpixels. Using these concepts, we restrict
the distribution over superpixel labels such that each unique
label must be a single 4-connected region. Any configu-
ration that does not satisfy this topology is assigned zero
probability. Further details can be found in the supplement.

Additionally, the proposed method incorporates a
penalty on the number of superpixels. As we show in Sec-
tion 4, new superpixels will have to be created to explain
new objects and disocclusions. If new superpixels can be
created, the optimal configuration in the absence of such a
penalty is the set of single-pixel superpixels, each with a
mean centered at the data of that pixel. We place a simple
geometric distribution on the number of superpixels, result-
ing in the following distribution over labels

p(2) o & T (2)}, (1)
where & is a hyper-parameter controlling coarseness, K is
the number of unique values in z, and I{7(z)} is one iff
z is a valid topology. To avoid confusion, we note that
& is proportional to the typical geometric distribution,
(1 —a')%a/, for some /. Finally, we model the cluster
means as being drawn from a uniform distribution

puf) =N, p(uf) = (1/256)°, )

where NN is the number of pixels, and each color channel is
assumed to only take on values in [0,255]. The Gaussian
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observation likelihood can then be expressed as
p(xilz =k, p) = HdN(xi,d D tkd, 0q) ()

where z;; = [¢;, a;] is the 5-dimensional feature vector, d in-
dexes a dimension, and o2 are hyper-parameters. The cor-
responding graphical model is shown in Figure 4b.

3.3. Inference

We now derive an optimization method from the gener-
ative model. The main departure from traditional Gaussian
mixtures is the joint distribution over z. We could alter-
nate between label and parameter optimization similar to
k-means. However, as shown in the supplement, joint opti-
mization of labels and parameters finds better extrema. We
optimize the hidden variables by proposing a set of label
“moves” and choose the optimal parameter associated with
proposal. By only accepting moves that increase the prob-
ability, we are guaranteed to find a local optimum within
our search space. The joint log likelihood over all random
variables can be expressed as

£(2) € log [p(Z) II I, G TT p(wial=:, ud)}
= ok + Zk Zd log p( 1, d, k), “4)

where £ denotes equality up to an additive constant, L as-
sumes that the following configuration of z is a valid topol-
ogy, some constants have been combined to form «, and Zj,
denotes the set of pixels in superpixel k. Note that the log
likelihood is only defined as a function of z because, for
each z, the optimal parameters, 1, will be implicitly found.
We denote the following relevant superpixel statistics

2

thd = Tagi, Lka= x
k,d g i€T, dyi s Lk,d g iez, T

d,i*

)

Although not explicit, these statistics are functions of z
through Zj,. The uniform prior in Equation 2 yields empri-
cal means as the optimal parameters. Denoting Ny, = |Z],
the optimal parameters can be expressed as

fuk,d(2) = tea/Ny. (6)
We define the observation log likelihood for superpixel k as
(N
(®)

The log likelihood of Equation 4 can then be expressed as

L(z) aK — Zk Zd Ln(xz,.d)- )

Additional details can be found in the supplement. We now
describe the three types of proposed label moves to change
z: local moves, merge moves, and split moves. If any of
proposed moves increase the log likelihood, we make the
move to a more optimal configuration. The algorithm con-
verges when all proposed moves are rejected.

£ log p(wz, s flk,d)

C t? 4= N T a
= —Nylogog + 7

En('rfk,d)

c,r
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Figure 5: Fitting hyper-parameters to natural images.

Local Moves: change the label of a single pixel. Because
of the topology constraints, only pixels bordering another
superpixel can change. A random border pixel ¢ is chosen,
and among all the labels that preserve the topology con-
straint, we find the labeling that corresponds to the highest
joint likelihood.

Merge Moves: combine two superpixels by observing that
merging two neighboring 4-connected regions still results in
a 4-connected region. A random superpixel is chosen, and
the largest likelihood for merging with any of the neighbor-
ing superpixel is found. The merge is accepted if it increases
the likelihood.

Split Moves: split a single superpixel into two. A split is
constructed by running k-means on a random superpixel
followed by enforcing connectivity similar to SLIC. The
split is accepted if it increases the likelihood.

3.4. Hyper-parameter Selection

There are three hyper-parameters to set in the generative
model: «, ag, ag. As the desired level of coarseness may be
driven by external factors, we require one user-specified pa-
rameter, M, capturing the approximate number of desired
superpixels. We now discuss how to set the other parame-
ters automatically.

The ratio between o2 and af determines the regularity of
superpixel shapes. As superpixels get larger, they will also
have to be more irregularly shaped to capture boundaries.
We found empirically that o2 Mo7 /2 produces nicely-
shaped superpixels. The model selection term, «, and the
location variance, a?, are related to the size of the resulting
superpixels and are learned based on natural image statis-
tics. The inference algorithm was run on randomly sized
patches from the Berkeley Dataset [ 1 4] for particular values
of a and o7. The resulting mean superpixel area (N/K)
is shown in Figure 5. Here, K refers to the number of su-
perpixels produced by the algorithm, and M is the number
of desired superpixels. The best quadratic fit relating the
parameters is then found to be

o2 = —[N/u]” + (12.51230). (10)
The variances can then be automatically set based on the de-
sired number of superpixels and some arbitrary ««. Example
superpixel segmentation results are shown in Figure 6.
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Figure 6: Example superpixels at two granularities of im-
ages from the Berkeley Segmentation Dataset [ 14].
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Figure 7: Graphical model for TSPs.

4. Temporal Consistency

In this section, we extend the superpixel model to de-
velop a temporal superpixel representation. Figure 7 depicts
the graphical model used for TSPs, which imposes dynam-
ics on the learned parameters of each superpixel.

4.1. Temporal Dynamics

Due to object motion and varying illumination, the pa-
rameters of each TSP evolve over time. The appearance
means are chosen to evolve independently with

D=Nup' s

a,t—
k

a,t—1

a,t
| k

k ’ 631)7

p(p (11)

where the superscript ¢ indicates the frame. The mean loca-
tions of the superpixels evolve in a more complex fashion.
Because objects move somewhat smoothly, we make the as-
sumption that superpixels that are close in location and that
look alike should move similarly. We capture this notion
with a Gaussian process (GP), f¢, modeled with

p(fHut ™) = N(fF 5 ™t S(eth),

where an element in the covariance matrix is defined as
t—1  t—1
Hd Wty a s g.a )

and h(-) is the squared exponential kernel (c.f. [17]).

A single GP is not often used to model flow fields. One
reason is that the prior on flow fields must be able to ac-
commodate both smoothness within objects and disconti-
nuities across objects. For example, using an L2 penalty
on neighbor differences in the Horn-Schunck optical flow
formulation [10] is related to a GP with a precision that
has a 4-connected neighbor sparsity pattern. These types

12)

Sk () (13)
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Figure 8: Samples from the Gaussian process flow. From
left to right: superpixel segmentation; GP with 4-connected
neighbor precision; GP with location kernel; GP with bilat-
eral kernel; mapping between flow vectors and colors.

of GPs, where the kernel depends only on location, are of-
ten too smooth to model dense flows. By incorporating the
appearance in the covariance kernel, we are able to model
both smoothness and discontinuities that are consistent with
flows. We call this covariance kernel the bilateral kernel, as
it is similar to the bilateral filter [21]. Exemplary samples
drawn from the sparse precision GP, location-only GP, and
the bilateral GP are shown in Figure 8.

While the bilateral GP is able to model flow discontinu-
ities, the prior does not fit the movement of a deformable
object composed of a single color. We therefore model the
location means as i.i.d. perturbations from the smooth flow

P! | fY) = Nyt 5 ft,621).

4.2. New, Old, and Dead Superpixels

(14)

Due to camera motion, occlusions, and disocclusions, we
must also allow old superpixels to disappear and new super-
pixels to emerge. We define a dead superpixel as one that
existed in the previous frame but no longer exists in the cur-
rent frame. Let K, denote the number of “old” TSPs that
existed in the previous frame and did not die and K,, de-
note the number of “new” TSPs that have appeared in the
frame. In the first frame, each TSP was treated as a new su-
perpixel with the corresponding log likelihood of Equation
9. In subsequent frames, the label distribution is updated to

p(z) o< 65 BRI{T (2)}, (15)
where B is the geometric distribution parameter for old
TSPs. We note that setting B larger than & encourages using
old TSPs versus generating new TSPs.

In the previous section, we showed that o influences the
size of the superpixels. Because B plays the same role for
old TSPs that & plays for new ones, higher Bs correspond
to favoring smaller superpixels. Consequently, we try to
separate the size of a superpixel from the tradeoff between
using an old or new superpixel. This is accomplished by
introducing an area term into the label distribution:

p(2) o 65 BT (2)} [ [, N(Nes 57, 030), - (16)

where 02, controls the variability of the area of each TSP.
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4.3. Inference

Inference in the dynamic case is similar to the static case.
While joint inference over all the hidden variables is com-
plicated by the GP flow, f¢, an iterative approach is straight-
forward. We find empirically that results are sensitive to the
initialization of the flow. However, initializing with optical
flow using [12] significantly improves results. Conditioned
on f, optimizing z can be done in a similar fashion as be-
fore. Then, conditioned on z, estimating f is a GP regres-
sion (c.f. [17]) on the 0old TSPs, 0 = {1,--- , K, }:

0t—1

£,t—1
o .

fr=2E+ G0 (gt = p ) + g (17)
As before, we propose different label moves with corre-
sponding optimal parameters, and accept the move if it in-
creases the likelihood. In the case of old TSPs, the prior
on the parameters is no longer uniform, and the form of the
optimal values change. Due to Gaussian conjugacy, the op-
timal parameters can still be found in closed form.

For convenience, we denote 6], ; as the mean of the mean
parameter. In the location case, 6], , £ f}, and in the ap-
AN

pearance case, 0}, ; = M};le- For the following likelihood

Pz, s 15, 4l05 ) = Pk alOha) T] pleailut.q), (18)
€Ly,
we show in the supplement that the optimal parameter is

o aiydﬂg%*tk‘dég

Fr,d = ~ NpoZ+ol (19)

Using the optimal mean, the observation log likelihood for
old TSPs becomes (up to a constant)

C

A ~t t
LO(IIk,d) = IOgP(l’Ik,daNk—,d Qk,d) = (20)
2 2 2 2 2
. Ny ./ tiabat2tk.ablk,a0q—Nibi a0a Ty
lOg |:6d0d 27T:| + ZUg(NK(siJrO'i) 20’3 .

The time superscripts have been omitted to avoid confusion.
The resulting joint log likelihood can then be expressed as

Zd Esk (-%'Zk,d)a
(21
where the state of a TSP, s, € {o,n}, indicates if it is old
or new, and selects an expression from Equation 8 or 20.
To optimize Equation 21, we use the three moves de-
scribed in Section 3.3 and an additional “switch” move. The
split move is slightly modified to accommodate the differ-
ence in new and old TSPs. For less than 1000 superpixels
per frame, inference takes a few seconds for the first frame
and tens of seconds for subsequent frames.

(N —17)?
2

209,

L(z) or BK, + aK, — Zk

Split Moves: split superpixel k&’ using the same k-means-
based partitioning algorithm as before. Assuming that the
proposed partition is Zy, = {Zy1 UZk2 }, with Zy,y NIy = 0,
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Figure 9: Example TSPs with (left) and without (right)
representing support outside of the image domain. Corre-
sponding vector difference in means is shown for each case.

092

we consider multiple possible labelings. We define K as the
set of labels that we can split into:

IC:{]{, Ny :O,Sk;:O}UkneW7 (22)

consisting of all the dead TSPs and a possible new one. For
each value k € IC, we propose two possible labels:

{ZIM = k‘/, RIpe = ]4)} or {ZIM = ]4), RIpe = k/}. (23)

The optimal proposal is chosen from this set. Note that
while /C could represent all the TSPs that have died in all
previous frames, for computational purposes, we only in-
clude those that existed in the previous frame.

Switch Moves: allow new TSPs to link to dead TSPs. A
random TSP, &/, is chosen and possibly relabeled to a dead
k € KC. If the optimal relabeling has a higher likelihood
than the current configuration, it is accepted.

4.4. Boundary Effects

Here, we consider the role image boundaries play in rep-
resenting TSPs. In particular, if the support of a superpixel
is not represented outside of the image domain, the data,
¢;, favors choosing means within the boundaries. Consider
Figure 9, which illustrates the tracking of two superpixels
that are moving to the right at the same speed. Because the
green superpixel is moving out of the image, the empiri-
cal location mean does not move correctly, causing errors
in the flow estimates and the optimal parameter estimates.
Consequently, we represent the full support of any super-
pixel that contains a pixel in the image domain. Details of
the modified formulation accounting for image boundaries
are explained in the supplement.

5. Experiments

In this section, we compare our temporal superpixel
method to the supervoxel methods described in [24] and
[25]. We introduce new metrics that measure the essence of
what a TSP represents. Parameter values for all videos and
experiments were fixed excluding M, which indicates the
desired number of superpixels per frame. Specific param-
eter choices can be found in our publicly available source
code: http://people.csail.mit.edu/jchang7/.
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5.1. Proposed Metrics

In the work of [24], three metrics were presented to eval-
uate super-voxel methods against ground truth object labels.
We consider a set of additional metrics aimed to capture
the following aspects of a good model: object segmenta-
tion consistency, 2D boundary accuracy, intra-frame spa-
tial locality, inter-frame temporal extent, and inter-frame la-
bel consistency. For a more detailed description of how the
metrics are calculated, please refer to the supplement.

Object Segmentation Consistency. Each supervoxel
should only belong to one object. The 3D undersegmen-
tation error (UE) and the 3D segmentation accuracy (ACC)
of [24] are aimed at measuring this trait. UE captures the
fraction of pixels that bleed past the boundary of a ground
truth segment and ACC captures the fraction of a ground-
truth segment that is correctly classified by the supervoxels.
The metrics are averaged across the ground truth segments.

2D Boundary Accuracy. Each superpixel should accu-
rately capture object boundaries. While [24] introduces the
3D boundary recall (BR3), we find that BR3 captures a mix-
ture of information between 2D boundary recall and object
segmentation consistency. As such, we consider 2D bound-
ary recall averaged across frames. The typical boundary re-
call metric finds the percent of ground truth boundaries that
are also declared superpixel boundaries. However, this met-
ric is not robust to small localization errors. The superpixel
boundaries are often dilated to reconcile the localization
problem, but this causes the error to depend on the amount
of dilation. We introduce the 2D boundary recall distance
(BRD) metric, related to the metric of [6], as the average
distance between points on the ground truth boundary to a
declared super pixel boundary averaged across frames. The
distance between boundaries exactly measures localization
errors and is also more easily interpretable.

Intra-Frame Spatial Locality. As shown in Figure 3, a
good representation should be local in nature. As superpix-
els get larger, they lose their representative power. Conse-
quently, assuming a perfect ACC, UE, and BRD, assigning
equally-sized superpixels corresponds to the best represen-
tation. We therefore introduce the size variation (SZV) met-
ric which considers the average standard deviation of super-
pixel sizes across all frames.

Inter-Frame Temporal Extent. A good TSP representa-
tion should contain TSPs that track objects for long periods
of time. The authors of [25] introduce the mean duration
time (MDT) metric which computes the average number
of frames a supervoxel exists in. Longer videos can in-
herently have higher MDT, complicating the comparison of
results across videos of different lengths. We therefore in-
troduce the temporal extent (TEX) metric which normalizes
the MDT by the total number of frames in the video.



Inter-Frame Label Consistency. Finally, we introduce the
label consistency (LC) which measures how well superpix-
els track parts of objects. Superpixel labels at frame ¢ — 1
are propagated using annotated ground truth flow and com-
pared to the superpixel labels at frame ¢. LC counts the
average number of pixels that agree between the inferred
superpixels and the ones propagated via the flow.

5.2. Algorithm Comparison

Using these metrics, we compare our TSP algorithm to
the top two supervoxel methods of [24] (GBH [8] and SWA
[20]) and the streaming version of GBH developed in [25].
We use the GBH implementation provided by [24] which
does not use optical flow since the original algorithm does
not produce superpixel segmentations (as shown in Figure
3). Unlike our algorithm, GBH and SWA exploit future data
by processing the entire video sequence at once. Streaming
GBH considers only looking at & frames in the future. For
a fair comparison with TSPs, we consider Streaming GBH
with £ = 1. We note that it is difficult to tune the parameters
of the other algorithms to sweep the range of desired super-
pixels. In contrast, our algorithm only required changing
M, the desired number of superpixels per frame.

Videos that are longer in length or that contain a lot of
background motion should contain more supervoxels than
short, static scenes. Therefore, unlike [24] which plots the
metrics against the number of supervoxels, we plot the met-
rics against the average number of superpixels per frame.
Quantitative results are shown in Figure 10. We evaluate the
algorithms using the videos from [12] and [22] which have
ground truth object segmentation. For the LC, we use the
videos from [2] and [12] since ground truth flow is needed.

TSPs perform slightly better in UE, comparable in ACC,
and worse in BRD. The BRD value for TSPs indicates that
the average distance between a ground truth boundary and a
superpixel boundary is approximately 1 pixel. This error is
often within the tolerance of most applications. TSPs per-
form better in the final three metrics, indicating that TSPs
extend farther in time, vary less in size, and maintain better
label consistency than supervoxels.

A visual comparison between TSP, GBH, and SWA is
shown in Figure 11. After obtaining the full superpixel seg-
mentation, we manually color a subset of superpixels that
existed in the first frame and visualize their extent in time
by looking at subsequent frames. TSP track superpixels
correctly through all frames, while GBH and SWA lose the
tracks as time progresses and exhibit drifting effects (shown
in blue). Additional TSP results are shown in Figure 12.

6. Conclusion

In this paper, we have presented a low-level video rep-
resentation called the temporal superpixel. While related
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Figure 10: Quantitative evaluation of TSPs, GBH, SWA,
and Streaming GBH. Arrows beside plots indicate direction
of better performance. Error bars indicate one stddev.

GBH

Figure 11: Visual comparison of algorithms for some su-
pervoxels that existed in the first frame. Each row is an
algorithm, and each column is a subsequent frame. Colors
are added manually to aid in in the visualization.

TSP SWA



Figure 12: Results from the TSP algorithm. Colors are
added manually to aid in in the visualization.

to the volumetric voxel, a TSP inherently treats the tempo-
ral dimension differently to accommodate videos. We have
shown quantitatively that TSP representations outperform
supervoxel methods. We encourage others to consider TSPs
as an intermediate representation and hope that our public
code facilitates that consideration.
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