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Abstract

The automatic extraction of line-networks from images
is a well-known computer vision issue. Appearance and
shape considerations have been deeply explored in the liter-
ature to improve accuracy in presence of occlusions, shad-
ows, and a wide variety of irrelevant objects. However
most existing works have ignored the structural aspect of
the problem. We present an original method which pro-
vides structurally-coherent solutions. Contrary to the pixel-
based and object-based methods, our result is a graph in
which each node represents either a connection or an end-
ing in the line-network. Based on stochastic geometry, we
develop a new family of point processes consisting in sam-
pling junction-points in the input image by using a Monte
Carlo mechanism. The quality of a configuration is mea-
sured by a probability density which takes into account both
image consistency and shape priors. Our experiments on a
variety of problems illustrate the potential of our approach
in terms of accuracy, flexibility and efficiency.

1. Introduction
Line-network extraction is a computer vision topic

widely explored during the two last decades. The pioneer

works have been led on the well-known road extraction

problem from remote sensed images [2, 11, 12]. Line-

network extraction is also of interest in other problems

like blood vessel detection from medical images [9, 10],

or structure extraction from natural textures [8]. This re-

search topic requires high-level considerations based on

shape and structure. Fews methods are able to recover the

line-networks from images in an automatic and robust way

because of occlusions, shadows, and a wide variety of irrel-

evant objects present in the scenes.

1.1. Related works

Three types of approach can be distinguished in the lit-

erature: pixel-based, line-segment-based and graph-based.

The pixel-based approaches constitute the most common

type of models. The network extraction is seen as a bi-

Figure 1. Our Junction-point process (middle) explores the graph

configurations in images in order to extract line-networks, here a

road network (left) from an aerial image and blood vessels (right)

from a retinal image.

nary segmentation problem in which each pixel belongs ei-

ther to the line-network or to the background. These mod-

els can benefit from powerful segmentation and tracking

tools based on shape and appearance information. How-

ever, they are not adapted to recover the network struc-

ture as they ignore the notion of objects as shown in Fig.

2. McKeown and Denlinger proposed road-surface texture

correlation and road-edge to recover the road center, its

width and local properties from aerial images [12]. Bar-

zohar and Cooper proposed geometric-probabilistic models

for road appearance, and applied dynamic programming to

track roads [2]. Poullis et al. merged perceptual group-

ing and segmentation techniques into a unified framework

to segment road pixels from multi-sensor data[17]. Marin

et al. [10] and Mnih and Hinton [14] proposed neural net-

work based approaches. The former developed a 7-D vec-

tor composed of gray-level and invariant features for seg-

menting blood vessels, whereas the latter used a massive

amount of training data to detect roads in aerial images.

Active contour methods are also popular, especially to im-

pose shape priors. Mayer et al. modeled road boundaries

as active contours and exploited scale-space behavior to ex-

tract road boundaries [11]. Rochery et al. developed higher-

order active contours, which generalize the linear function-

als in the energies to the arbitrary polynomial functionals.

This method is dedicated to road detection from remotely

sensed images [18]. Furthermore, Peng et al. developed

a phase field higher-order active contours for road network
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Figure 2. Different types of network extraction models. The graph-

based models constitute a natural way to describe the line-network,

contrary to pixel-based and object-based methods which do not

take into account its structural aspect.

extraction [16]. Several methods exploiting geodesic dis-

tances have also been proposed, as [15] where tubular struc-

tures are extracted from bi-dimensional images by comput-

ing geodesic curves over a four-dimensional space that in-

cludes local orientation and scale.

The object-based models represent the line-networks as a

configuration of geometric objects, typically line-segments.

These models are usually robust in the presence of occlu-

sions as they allow certain types of structures to be favored.

However, finding the optimal object configuration is a dif-

ficult task and the object connection is hard to obtain in

practice as shown in Fig. 2. Lacoste et al. [7] proposed

a model to describe the interaction between line-segments

based on overlapping, alignment and connection considera-

tions. This model is complex and relies on a large number

of parameters whose tuning is a delicate task. Lafarge et

al. developed a more general model by reducing the object

interactions [8], but at the expense of result accuracy. This

model is extended in [20] to efficiently tackle large-scale

data using a parallelization scheme.

The graph-based representation is the most natural way

to address the problem as the network structure is guaran-

teed by construction. Each node of the graph corresponds

either to a junction between at least two line-segments, or to

an ending point as illustrated in Fig. 2. Graphs have rarely

been used in the literature mainly because these mathemat-

ical tools are often difficult to manipulate, especially to ex-

tract hierarchical networks. Turetken et al. [19] construct a

general graph from seed points in which an optimal path is

searched for. Hu et al. utilized road footprints as features

which are tracked to detect intersections and extract the net-

work from aerial images [6]. The length of the graph edges

are fixed, which makes the representation not flexible. Note

also that some works have been proposed to artificially gen-

erate road networks using procedural models, e.g. [4].

1.2. Motivations and contributions

Most of the existing methods focused on appearance and

shape considerations, and have ignored the structural as-

pect of the problem. Although graph-based representations

are relatively unpopular, they remain the most natural way

of modeling line-networks. In particular, they guarantee

a structurally-coherent solution, and are adapted to multi-

scale networks using graph attributes as edge width.

The solutions proposed by Turetken et al. [19] and Hu

et al. [6] underline the potential of the graph-based meth-

ods, but they suffer from some strong limitations. The for-

mer generates only graphs without cycles, i.e. tree struc-

tures, whereas the latter provides a non-flexible represen-

tation with a constant edge length for road extraction only.

Finding a efficient and flexible graph-based method is an

open challenge. Our solution brings several contributions:

• Structural guarantees. Every potential solution has a

coherent network structure as our configuration space

is the set of the planar graphs embedded in the image

support. This constitute a significant advantage com-

pared to the pixel-based and object-based methods.

• New point processes. We propose a new family of

point processes, called junction-point processes. Con-

trary to the conventional marked point processes used

in the literature, e.g. [7, 8, 20], junction-point pro-

cesses do not require complex geometric priors. The

sampling procedure is thus more stable and the model

parameters are highly reduced.

• Flexibility. Our algorithm can be applied to a variety

of network extraction problems, as illustrated in Fig.

1. A learning procedure is proposed for selecting the

optimal model parameters with respect to a given prob-

lem. In addition, the algorithm is automatic and does

not depend on any initialization.

2. Junction-point processes
Point process. Point processes describe an unordered

set of points in a compact set F ⊂ Rk, where Rk is a d-

dimensional space (here, k = 2). For n = 1, 2, . . ., let Ωn

be the set of configurations ω = {ω1, . . . , ωn} that consists

of n unordered points ωi ∈ F . A point process on F is a

mapping Ψ from a probability space to the set of configura-

tions Ω =
⋃∞

n=1 Ωn, such that, for all bounded Borel sets

S ⊂ F , the number of points NΨ(S) falling in S is a finite

random variable.

The reference point process is the homogeneous Poisson

process for which the number of points follows a discrete

Poisson distribution with parameter λF . The position of

the points is uniformly and independently distributed in F .

Point processes can provide more complex realizations of

points by using a probability density h(.) defined in Ω and

a reference measure μ(.) under the condition that the nor-

malization constant of h(.) is finite:∫
ω∈Ω

h(ω)dμ(ω) <∞ (1)
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The measure μ(.) having the density h(.) is usually defined

via the intensity measure ν(.) of an homogeneous Poisson

process. Specifying a density h(.) allows the insertion of

data consistency, and also the creation of spatial interactions

between the points. Note that the probability density h(.)
can be expressed by a Gibbs energy U(.) such that

h(.) ∝ exp−U(.) (2)

Sampling a point process. Searching for the configu-

ration ω� which maximizes the probability density h, such

that

ω� = argmax
ω∈Ω

h(ω) (3)

is not a conventional optimization problem as the probabil-

ity density h is multi-modal and defines in a configuration

space having a variable dimension. A Monte Carlo sam-

pler is usually required to find an approximation of ω�, and

more precisely the Reversible Jump Markov Chain Monte

Carlo (RJMCMC) sampler [5]. This algorithm consists of

simulating a discrete Markov Chain (Xt)t∈N on the config-

uration space Ω, converging towards an invariant measure

specified by h. At each iteration, the current configuration

ω of the chain is locally perturbed to a configuration ω′ ac-

cording to a density function Q(ω → .), also called a ker-

nel. The perturbations are local, which means that ω and

ω′ are very close, and differ by no more than one or two

points. The configuration ω′ is then accepted as the new

state of the chain with a probability depending on the prob-

ability density variation between ω and ω′, and a relaxation

parameter Tt. The kernel Q can be formulated as a mixture

of sub-kernels Qm chosen with a probability pm such that

Q(ω → .) =
∑
m

pmQm(ω → .) (4)

Each sub-kernel is usually dedicated to specific types of

moves, as the creation/removal of a point (Birth and Death

kernel) or the modification of parameters of a point (e.g.
translation kernel). The kernel mixture must allow any

configuration in Ω to be reached from any other configu-

ration in a finite number of perturbations (irreductibility

condition of the Markov chain), and each sub-kernel has to

be reversible, i.e. able to propose the inverse perturbation.

The RJMCMC sampler is controlled by the relaxation

parameter Tt, called the temperature, depending on time

t and approaching zero as t tends to infinity. Although

a logarithmic decrease of Tt is necessary to ensure the

convergence to the global minimum from any initial

configuration, one uses a faster geometric decrease which

gives an approximate solution close to the optimum [1].

From parametric objects to planar graphs. Point pro-

cesses are attractive tools in vision as they allow the manip-

ulation of parametric objects. Indeed, some additional at-

tributes wi can be added to each point ωi in order to create

Algorithm 1 RJMCMC sampler [5]

1- Initialize X0 = ω(0) and T0 at t = 0;

2- At iteration t, with Xt = ω,

• Choose a sub-kernel Qm according to probability pm

• Perturb ω to ω′ according to Qm(ω → .)

• Compute the Green ratio

R =
Qm(ω′ → ω)

Qm(ω → ω′)

(
h(ω′)
h(ω)

) 1
Tt

(5)

• Choose Xt+1 = ω′ with probability min(1, R), and

Xt+1 = ω otherwise

Figure 3. Junction-point. A junction-point is specified by the spa-

tial coordinates in F , a number k of directions, and the angle γi
giving the direction i where is located an adjacent point.

parametric objects xi = (ωi, wi). By adding a length and an

orientation to each point for instance, one can generate con-

figurations of line-segments with geometric interactions, as

in [7]. As explained in Section 1, such an object-based tech-

nique, called marked point processes in the literature, is not

adapted to address line-network extraction problems.

We propose a new family of point processes able to ma-

nipulate planar graphs, called junction-point processes. The

main idea relies on the fact that each point of a realization

informs the directions where its adjacent points are located,

as illustrated on Fig. 3. A junction-point process on F is a

point process on F for which every point ωi ∈ F is com-

pleted by a set of directions (γ
(1)
i , ..., γ

(k)
i ), and optionally a

set of additional parameters (w
(1)
i , ..., w

(k)
i ), so that a point

configuration is associated to a unique planar graph in F .

We define a k-junction-point xi by

xi = (ωi, γ
(1)
i , .., γ

(k)
i , w

(1)
i , .., w

(k)
i ) (6)

where k represents the number of directions. We denote

by Gx, the planar graph associated to the junction-point

configuration x = {x1, ..., xn}. The additional parame-

ters (w
(1)
i , ..., w

(k)
i ) of the junction-point xi correspond to

user-defined attributes on adjacent edges of the node i in

the graph Gx. Contrary to the conventional marked point

processes used in the literature, junction-point processes do

not require complex geometric priors as a graph structure is
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directly guaranteed by construction. Fig. 4 illustrates the

advantages of junction-point processes for addressing line-

network extraction problems.

Figure 4. Point process. A marked point process of line-segments

(left) cannot describe a line-network with accuracy as the line-

segments are not ideally connected. To the contrary, a junction-

point process (right) brings structural guarantees as a unique pla-

nar graph is associated to each junction-point configuration.

3. Problem formulation
Let us consider a junction-point process on the 2D do-

main supporting the input image I . In order to be able to

extract hierarchical line-networks, a line width is consid-

ered for each edge of a graph Gx. The parameter w
(k)
i (see

Eq. 6) represents the line width associated to the kth direc-

tion of the junction-point xi in this model. In a hierarchical

network, one can assume that the widths of the lines can

take only a few possible values. In practice, the domain of

this parameter is discrete.

The probability density h extended to the junction-point

configurations can be expressed as a product of a density hd

measuring the consistency of a junction-point configuration

with the data, and a density hp acting as a shape prior on the

line-network

h(x) ∝ hd(x)hp(x) (7)

3.1. Data consistency

As shown in Fig. 5, pixels on the lines usually have sim-

ilar colors, and pixels on the line boundaries usually have

large gradients. We use these two conventional assump-

tions to design the data consistency density hd. In order

to extract the dominant characteristics of the lines, two nor-

malized histograms Hr and Hn are learned from samples to

represent the color distributions of the line regions and non-

line regions respectively. Using histograms allow us to be

relatively robust to the presence of clutter objects as small

vehicles, trees and shadows for road extraction.

By assuming the conditional independence of pixels

in the image, one can expressed the global data density

through a product of local likelihoods on each pixel p of

the image

hd(x) ∝
∏
p∈I

P (Ip|Gx) (8)

Figure 5. Data consistency. Both region-based intensity (middle)

and boundary-based intensity (right) are used to detect the class of

interest from the input image (left, here a retinal image). These

two criteria bring complementary information (see the blood ves-

sels with different widths on the close-ups).

where Ip is the color intensity of the image at p. The local

likelihood at pixel p is expressed by taking into account both

color similarity on the lines and discontinuity on the line

borders.

P (Ip|Gx) =

{
dinside(Ip) · �I(p) if p ∈ Gx

doutside(Ip) · �I(p) otherwise
(9)

where dinside (respectively doutside) represents the color

distributions of the line regions (resp. non-line regions)

induced from the normalized histogram Hr (resp. Hn).

�I(p) is the distribution of the image gradient magnitude

at p equal to 1 when p does not belong to the boundary ∂Gx

of the line regions.

3.2. Shape priors

The density hp is introduced to favor certain shapes of

graphs. Three different criteria are taken into account to

characterize the shape of a graph Gx from a junction-point

configuration x : the graph connectivity, the edge orienta-

tion and the line width. The density hp can thus be formu-

lated through a product of three densities by

hp(x) ∝ hconnectivity(x)·horientation(x)·hwidth(x) (10)

Graph connectivity. The complexity of a graph can be

analyzed through the graph connectivity. The number of

edges is determined by the number of junction-points and

their number of directions for each of them. The number of

faces is determined by the numbers of edges and vertices ac-

cording to Euler’s formula. In other words, one can encour-

age graphs to have a certain complexity knowing the occur-

rence probability of a k-junction-point for every k ≥ 1. The

graph connectivity density can thus be expressed as

hconnectivity(x) =

(
∑
k≥1

nk)!∏
k≥1

nk!

∏
k≥1

pnk

k (11)
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where nk is the number of k-junction-point in x, and pk
is the occurrence probability of a k-junction-point in x
whose value is learned from samples. In particular, we

have
∑

k∈N�

pk = 1. In the sequel, we denote by P the set of

the occurrence probabilites pk with k ≥ 1.

Edge orientation. The relative orientation of the edges

in a graph constitutes an important criterion to characterize

graph shapes. As shown on Fig. 1, the angles between the

lines are significantly different between a road network and

blood vessels. Given a k−junction-point xi, we denote by

β
(l)
i the relative normalized angle between the lth and the

l+1th directions, such that β
(l)
i =

(γ
(l+1)
i −γ

(l)
i )

2π . A Dirichlet

law is considered to model the distribution of the relative

normalized angles β
(l)
i :

Dir(β
(1)
i , .., β

(k)
i ;α1, .., αk) ={

1 if k = 1
∏k

l=1 Γ(αl)

Γ(
∑k

l=1 αl)

∏k
l=1 β

(l)
i

αl−1
otherwise

(12)

where {α1, ..., αk} are the parameters of the Dirichlet dis-

tribution of the k−junction-points. The edge orientation

density can thus be formulated as a product of Dirichlet dis-

tributions on every junction-point of x:

horientation(x) =
∏

i=1..n

Dir(β
(1)
i , .., β

(k)
i ;α1, .., αk) (13)

In the sequel, we denote by α, the collection of the

parameter sets {α1, ..., αk} of the Dirichlet distribution of

the k−junction-points with k ≥ 1.

Line width. The line width density consists of favoring

the line widths whose occurrences are the highest. A nor-

malized histogram Hw is estimated from samples to repre-

sent the width distribution. Then, we have:

hwidth(x) =
∏

j=1..m

d
(j)
width(x) (14)

where d
(j)
width measures the difference between the ratio of

the width of value j predicted in Hw with the one in x.

3.3. Model parameters

The proposed model depends on a set of parameters

{λF ,P, α,Hw, Hr, Hn}. These parameters can be learned

from annotated image samples by a Maximum Likelihood

Estimation. The Poisson parameter λF which represents

the expected number of junction-points is calculated as the

average number of junction-points in the annotated im-

age samples. The Maximum Likelihood Estimate of each

occurence probability pk ∈ P is given by the rate of

k−junction-points in the annotated image samples. Since

there is no closed-form solution for the Maximum Likeli-

hood Estimate of Dirichlet distribution, we apply a fixed-

point iteration to estimate the parameter set α [13]. The his-

tograms Hr and Hn are estimated by counting the number

of pixels with different colors in line regions and non-line

regions respectively. Hw is estimated by counting the num-

ber of lines with different widths from the annotated image

samples.

3.4. Optimization

The RJMCMC sampler, described in Alg. 1, is used to

find an junction-point configuration close to the configura-

tion maximizing the density h. Two kinds of proposition

kernels are considered in the sampler: the birth and death

kernel QBD, and the translation kernel QT . The use of

these two kernels is sufficient to guarantee the irreducibility

condition of the Markov chain.

Figure 6. Proposition kernels. The birth and death kernel (left)

proposes to create or remove a junction-point randomly in the cur-

rent configuration. The translation kernel (right) is devoted to the

displacement of a junction-point.

Birth and death kernel. The uniform birth and death

kernel allows a junction-point to be added or removed ran-

domly in a configuration x, as illustrated in Fig. 6. Such

transformations, which correspond to jumps into the sub-

spaces of higher (birth) and lower (death) dimensions, mod-

ify the complexity of the graph Gx. As detailed in [3], the

proposition kernel ratio of a birth can be expressed by

QBD(x′ → x)

QBD(x→ x′)
=

pd
pb

λF

n(x′)
(15)

where λF is the Poisson parameter representing the ex-

pected number of junction-points in the domain F , n(x′) is
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the number of junction-points in the proposed configuration

x′, and pd (resp. pb) is the probability of choosing a death

(resp. a birth). In practice, we have pd = pb = 0.5. In case

of a death, the proposition kernel ratio corresponds to the

inverse birth’s ratio.

Note that we impose some restrictions on the cre-

ation/removal of the junction-points in order to guarantee

the coherence of the graph. In particular a new junction-

point cannot be proposed if it generates crossing edges.

Note also that when a junction-point is added or removed,

the directions of the adjacent junction-points are updated.

Translation kernel. The translation kernel allows a

junction-point to be moved without modifying the graph

complexity (Fig. 6). As the translation of a junction-point

is proposed randomly, the proposition kernel ratio is simply

given by

QT (x
′ → x)

QT (x→ x′)
= 1 (16)

In practice, a junction-point is moved in a small domain

centered around its initial position. This proposition kernel

is particularly interesting at the end of the sampling proce-

dure to locally adjust the shape of the graph, as shown on

Fig. 7.

Figure 7. Evolution of the junction-point configuration during the

sampling. At high temperature, junction-points of low quality are

frequently accepted, leading to non relevant graphs (left close-

ups). When the temperature decreases, the process becomes pro-

gressively selective (top right close-ups) as the Gibbs energy of our

model (U(x) ∝ −ln[h(x)]) is decreasing. At low temperature,

the current junction-point configuration evolves through some lo-

cal adjustments: the process is stabilizing close to the global min-

imum (bottom right close-up).

4. Experimental results
4.1. Flexibility

The algorithm has been tested on a variety of line-

network extraction problems ranging from road extraction

from satellite and aerial images to blood vessel extraction

from retinal images through more atypical problems as fa-

cade structure extraction (Fig. 9). Although each of these

problems has its own specificities, our model formulation is

general enough to provide coherent results in each case. In

particular, the data consistency term is able to distinguish a

variety of lines with different colors and widths in images.

In addition, the model parameters are robustly estimated.

In order to validate our shape prior, our model has been sim-

ulated without input images. As shown on Fig. 8, the shape

prior gives simulated networks more realistic and structured

than the Quality Candy model proposed in [7]. The shape

prior also allows free-form line-networks to be recovered as

shown on Fig. 9-right.

Figure 8. Comparison between our junction-point process and a

marked point process of line-segments [7]. Networks are sim-

ulated without using input images. Our junction-point process

(right) proposes a more natural and realistic representation of line-

networks than the line-segment-based model (left). In particular,

the line-segments are not correctly connected (see red marks) and

the network representation is not structured.

4.2. Accuracy

The accuracy of our algorithm has been evaluated on the

road extraction problem from satellite images, and com-

pared to existing methods [16, 21, 22]. The input image

shown on Fig. 10 is particularly challenging as it describes

a dense urban area containing many irrelevant objects and

whose roads are difficult to distinguish. Our algorithm pro-

vides a more structured result than these methods. Note

that they do not produce the vectorization of roads contrary

to our algorithm. This constitutes a notable advantage for

industrial applications. As illustrated on Fig. 9, the results

obtained on hierarchical networks in which lines have dif-

ferent widths are convincing as few minor lines are omitted.

Tab. 1 presents some quantitative comparisons with two

line-segment point processes [8, 20]. Results produced by
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Figure 9. Shape prior flexibility. Our algorithm is able to extract both regular (first and second columns, facade and tiles) and free-form

(three left columns, roads in a residential area, leaf and blood vessels in a retinal image) line-networks. Note in particular that the line-

networks with different widths are recovered with few omissions, eg blood vessels or leaf.

junction-points are competitive in terms of correctness and

completeness. Additional comparisons can be found at

http://www.sop.inria.fr/members/Florent.Lafarge/benchmark

/evaluation.html.

4.3. Performance

The computation time of our algorithm is relatively fast

compared to existing methods. For example, 270 seconds

are necessary to obtain the road extraction result presented

on Fig. 9-middle. More than half an hour is required from

such an image by the methods proposed by Lacoste et al.

[7]. In particular, the conventional point process methods

waste time in trying to impose object structure through com-

plex geometric priors. In [7], the sampling is long and fas-

tidious as the object connection is never accomplished. We

avoid this problem as each possible configuration is struc-

tured by construction.

Table 1. Quantitative comparison with different point processes

from the Tiles image presented on Fig. 9. As the methods

use different types of representation (complexity), a pixel-based

evaluation is used (Correctness = TP/(TP+FP), Completeness =

TP/(TP+FN)).

Junction-points Verdie[20] Lafarge[8]

Correctness 0.462 0.673 0.346

Completeness 0.649 0.783 0.518

Complexity graph line line

Time 227s 103s 293s

4.4. limitations

Our model is based on the assumption that a network is

represented by piecewise straight lines. The curved parts of

a network can thus be more delicate to extract, at least com-

putation times are increased as more junction-points are re-

quired to correctly recover these parts. Moreover, sampling

junction-points require more fineness than sampling line-

segments. Indeed, missing a junction-point penalizes all its

adjacent lines whereas missing a line-segment is less disad-

vantageous in terms of network coverage.

5. Conclusion
We propose an original stochastic model for extracting

line-networks from images. The algorithm has several

interesting characteristics. Based on a graph representation,

every potential result has a coherent network structure and

is vectorized contrary to the pixel-based and object-based

methods. The algorithm is also flexible and can be applied

to a variety of network extraction problems without tuning

parameter models by trial and error. Finally the junction-

point processes have significant advantages compared to

the conventional point processes as (i) they do not require

the introduction of complex geometric priors, and (ii) their

sampling is more stable.

In future works, it would be interesting to improve the

sampling procedure of the junction-point processes to re-

duce the computation time. One option could be to develop

a parallelization scheme as in [20] so that several perturba-

tions can be simultaneously proposed. Another interesting

challenge is to adapt our approach to the networks of 3D-

lines whose configuration spaces are significantly larger.
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Correctness Completeness Complexity Time

Junction-points 0.825 0.769 graph 25min

Peng et al.[16] 0.852 0.969 pixel 60min

Yu et al.[22] 0.369 0.605 line n/a

Wang et al.[21] 0.346 0.935 pixel n/a

Figure 10. Comparison with three specialized algorithms dedicated to road-network extraction [16, 21, 22]. Our algorithm provides a

more structured result than these methods. Only 14 junction-points are detected leading to a very low representation complexity without

altering the accuracy. In particular, the road connections are ideally recovered contrary to other algorithms (see close-ups). Although our

junction-point process is slightly less accurate than the higher-order active contour model proposed by [16], running times are significantly

faster (see table).

able comments, Ting Peng and the DRIVE database for pro-

viding images and Ground Truth.
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