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Abstract

We consider the problem of automatically estimating the
3D pose of humans from images, taken from multiple cali-
brated views. We show that it is possible and tractable to
extend the pictorial structures framework, popular for 2D
pose estimation, to 3D. We discuss how to use this frame-
work to impose view, skeleton, joint angle and intersection
constraints in 3D. The 3D pictorial structures are evaluated
on multiple view data from a professional football game.
The evaluation is focused on computational tractability, but
we also demonstrate how a simple 2D part detector can be
plugged into the framework.

1. Introduction
Human pose estimation is an important problem in com-

puter vision [11]. It comes in many different flavors de-

pending on the final goal and the assumptions made:

• Estimate pose in 2D or 3D.

• Estimate pose from a single time frame or a sequence.

• Estimate pose from a single camera view or multiple.

• Impose a weak or strong prior on the pose.

In this paper we focus on human pose estimation in 3D, at

a single time frame, using multiple views, imposing a weak

pose prior. We explore how pictorial structures can be used

to solve this problem.

From a wider perspective, pictorial structures are inter-

esting since they might provide a unifying framework for

general pose estimation and object detection in both 2D and

3D. They are also interesting from a practical point of view,

due to their efficiency. Pictorial structures simplify the in-

ference over the high-dimensional space of human poses,

by modeling the dependencies between body parts as a tree

structure, as opposed to a general graph.

Pictorial structures in 2D typically discretize the search

space. Using dynamic programming over the tree graph

a global optimum of a cost function is computed. This is

Figure 1. We discretize the space of human 3D poses and find the

pose that best fits the images from a set of calibrated cameras,

using dynamic programming.

the state-of-the-art for single view human 2D pose estima-

tion [9, 8, 16, 1]. The pictorial structures framework also

works well for general 2D object detection. The deformable

part model [7], which fits this framework, provides state-of-

the-art performance for this problem. Recently this type of

model has also been extended to 3D pose estimation of gen-

eral objects [12], where in this case pose corresponds to the

single overall rotation of the object relative to the camera.

However, pictorial structures have not been used as much

for 3D pose estimation of humans, or articulated objects in

general. Bergtholdt et al. [2] do multiple view 3D pose es-

timation, by first inferring the 2D pose in each view. They

couple the inference over the different views by enforcing

soft epipolar constraints. In this way 3D information is

taken into account although the search is done in 2D. A dis-

advantage with this approach is that the coupling of views

cannot be implemented in a tree graph. By using a general

graph the inference of a global optimum is not tractable.

Sigal et al. [15] on the other hand perform the search in

3D. They argue that while efficient 2D pose estimation re-

lies on a discretization, this is not practical in 3D. Therefore

they use a stochastic algorithm to perform inference over a

continuous space. This has two disadvantages compared to

the discretized pictorial structures, commonly used in 2D.

The stochastic algorithm is more complicated and it cannot

give the same guarantee of global optimality as dynamic

programming over a discrete space.
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Figure 2. The Bayesian network of our model. The body parts are

in topological order: Pelvis, Torso, Left Upper Leg, Right Upper

Leg, Left Upper Arm, Right Upper Arm, Left Lower Leg, Right

Lower Leg, Left Lower Arm, Right Lower Arm. The square nodes

represent measured variables.

Discretizing the space of 3D poses is difficult for many

reasons. 2D rotations are simply described by a single an-

gle, which can be used to create a grid of evenly spread ro-

tations, such that two discrete rotations can be composed to

another discrete rotation. The space of 3D rotations is more

complicated and has no gold-standard parametrization. It

is not obvious how to create a discrete set of 3D rotations

that are evenly spread and can be easily composed. Also, in

2D the general distance transform is used to give efficient

inference [8]. It is not clear how to generalize this to 3D

rotations. Furthermore, the space of translations and rota-

tions in 2D together form a 3D space, whereas the space of

translations and rotations in 3D together form a 6D space.

A discretization of 3D poses would therefore require con-

siderably more points. It is unclear whether dynamic pro-

gramming is tractable over this larger space. The goal of

this paper is to address these issues. We aim to show that

discrete pictorial structures in 3D are practical and tractable.

Our model is described in section 2. We first describe the

general framework, which is more or less the same in 2D

and 3D, and then describe the aspects unique to 3D. In sec-

tion 2.1 we discuss weak pose priors leading to tractable in-

ference. These impose skeleton and joint angle constraints.

In section 2.2 we discuss how to create a discrete search grid

over 3D poses. The problem of double-counting, typical for

tree-based models, is discussed in section 2.3. In the exper-

iments section 3 we evaluate our model on multiple view

data from a professional football game. First the tractability

is evaluated and then we implement and evaluate a simple

HOG-based part detector.

2. Model
In this section we initially present a general overview of

our model and framework that is consistent with pictorial

structures in 2D. The details specific to a 3D implementa-

tion are then discussed.

The human body is modeled as a collection of N body

parts. The state Xn = (Tn, Rn) of each part n is defined by

its global translation Tn and global rotation Rn in 3D. Each

is considered as a discrete random variable. Outcomes of

these random variables are denoted by xn = (tn, rn) and

assumed to be elements of the discrete set ΩX = ΩT × ΩR.

In section 2.2 we discuss how the space of translations

and rotations in 3D are discretized to give ΩT ⊂ R
3 and

ΩR ⊂ SO(3). The state of all parts is represented by

X = (X1, . . . , XN ). We assume the parts are connected

in a tree graph and the state of part n only depends on the

state of its parent pa(n):

PXn|X(xn | x) = PXn|Xpa(n)
(xn | xpa(n)) (1)

The joint distribution of all parts then factorizes as:

PX(x) =
∏
n

PXn|Xpa(n)
(xn | xpa(n)) (2)

Our goal is to estimate the state of the parts from image

measurements. Let In = (I1n, . . . , I
C
n ) be a random vari-

able representing the image evidence from C views of part

n. We assume the evidence from different views are inde-

pendent and therefore the likelihood of part n in state xn

generating the image evidence in can be written in terms of

the likelihood functions for each view:

PIn|Xn
(in | xn) =

∏
c

PIc
n|Xn

(icn | xn) (3)

This likelihood provides an image matching score or a

goodness-of-fit to all camera views for a part given its state,

thereby imposing view constraints. If I = (I1, . . . , IN ) is

the image evidence of all parts and we assume In is con-

ditionally independent of all I \ In given Xn, the full joint

distribution over all the random variables factorizes as:

PX,I(x, i) =
∏
n

PIn|Xn
(in | xn) PXn|Xpa(n)

(xn | xpa(n))

(4)

The Bayesian network in figure 2 displays the assumed de-

pendency structure of the variables in our model. We want

to find the most probable state x∗ of the parts given mea-

surements of their images i. This corresponds to solving

the discrete optimization problem:

x∗ = argmax
x

PX|I(x | i) = argmax
x

PX,I(x, i) (5)

Since the objective function is factorized over a tree graph,

the global maximum can be found using the max-product

algorithm [3]. See algorithm 1 for its application to our

problem. We assume the parts are ordered topologically,

i.e. the index of a child is always greater than the index of

its parent and we let the root have index 1. The costly part of

the algorithm is the optimization problem in the innermost

loop:

max
xn

(
lnPXn|Xpa(n)

(xn | xp) +mn(xn)
)

(6)
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Algorithm 1 Max-product for our model

mn(xn) := lnPIn|Xn(in | xn) ∀n
for n := N to 2

p := pa(n)
for xp ∈ ΩX

m̃ := max
xn

(
lnPXn|Xp(xn | xp) +mn(xn)

)

mp(xp) := mp(xp) + m̃
end

end
x∗
1 := argmax

x1

m1(x1)

for n := 2 to N
p := pa(n)
x∗
n := argmax

xn

(
lnPXn|Xp(xn | x∗

p) +mn(xn)
)

end

for all xp ∈ ΩX . The time complexity of this is in gen-

eral O(|ΩX |2) = O(|ΩT |2|ΩR|2). We consider N to be

constant. In section 2.1 we show how to reduce the com-

plexity to O(|ΩT ||ΩR|) and O(|ΩT ||ΩR|2), by choosing a

pose prior PXn|Xpa(n)
which exploits the fact that we are

modeling a 3D human skeleton.

2.1. Skeleton Model

As we model the human as a kinematic tree, the state

Xn = (Tn, Rn) of a child depends only on that of its par-

ent. The global translation Tn and rotation Rn of each part

can then be defined recursively in terms of local translations

ΔTn and local rotations ΔRn of the part and the global

translation and rotation of its parent:

Rn = Rpa(n)ΔRn (7)

Tn = Tpa(n) +Rpa(n)dn +ΔTn (8)

where dn is a constant vector offset of part n from its parent.

We assume the global translation and rotation of the root is

uniformly distributed and view the conditional probability

PXn|Xpa(n)
as a prior on the pose of part n given the pose

of its parent. If all the local translations and rotations are

assumed to be independent of one another, then Tn and Rn

are independent given the parent state:

PXn|Xpa(n)
= PTn|Xpa(n)

PRn|Xpa(n)
(9)

From equation (7) we see that the rotation of a child is inde-

pendent of the translation of its parent and Rn is determin-

istically defined by Rpa(n) and ΔRn. Therefore we have:

PRn|Xpa(n)
(rn | (tp, rp)) = PRn|Rpa(n)

(rn | rp)
= PΔRn

(rTp rn) (10)

as ΔRn = RT
pa(n)Rn. Similarly, the translation prior, by

exploiting equation (8), can be expressed as:

PTn|Xpa(n)
(tn | (tp, rp)) = PΔTn

(tn − tp − rp dn) (11)

The total pose prior thus factorizes as:

PXn|Xpa(n)
((tn, rn) | (tp, rp)) =

PΔTn(tn − tp − rp dn) PΔRn(r
T
p rn) (12)

where PΔTn is a prior over the local translations and PΔRn

is a prior over the local rotations.

Translation Prior We propose three alternatives for the

translation prior. Each alternative provides potential oppor-

tunities for speeding up the general max-product algorithm

1. The simplest corresponds to modeling the skeleton as a

chain of limbs of fixed length and is expressed with:

PΔTn
(Δtn) =

{
1 if Δtn = (0, 0, 0)T

0 otherwise
(13)

One can also allow each limb some small degree of flexibil-

ity in its length by defining a set Mn of possible deforma-

tions such that:

PΔTn(Δtn) ∝
{
1 if Δtn ∈Mn

0 otherwise
(14)

Another possibility is to use a loose chain model as in stan-

dard 2D pictorial structures:

PΔTn(Δtn) ∝ N (Δtn | (0, 0, 0)T , σ2
n I3) (15)

The local translations are then described by a discretized

normal distribution with zero mean and isotropic covari-

ance. With this prior the inference can be made efficient

using the distance transform [8].

In this work we only explore the fixed length constraint

and while it is somewhat restrictive, it is not an unreason-

able assumption to make in 3D. This is not the case in 2D

where limbs in the image can go through extreme foreshort-

ening due to projection and it is therefore a necessity to al-

low the length of limbs to vary.

Rotation Prior The distribution PΔRn
describes the pos-

sible rotations of the joint connecting two parts. In this pa-

per we consider in detail two possibilities. The first is sim-

ply a uniform distribution:

PΔRn(Δrn) ∝ 1 (16)

The second alternative we examine is one which enforces

hard limits on joint angles:

PΔRn
(Δrn) ∝

{
1 if Δrn ∈ Qn

0 otherwise
(17)

This type of prior can be expressed conveniently for hu-

mans as hard constraints in the Twist-swing parametrization
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Algorithm 2 Max-product imposing view and skeleton con-

straints

mn(xn) := lnPIn|Xn(in | xn) ∀n
for n := N to 2

for tn ∈ ΩT

m̃(tn) := max
rn

mn((tn, rn))

end
p := pa(n)
for tp ∈ ΩT

for rp ∈ ΩR

tn := tp + rpdn
mp((tp, rp)) := mp((tp, rp)) + m̃(tn)

end
end

end
x∗
1 := argmax

x1

m1(x1)

for n := 2 to N
p := pa(n)
t∗n := t∗p + r∗pdn
r∗n := argmax

rn

mn((t
∗
n, rn))

end

of 3D rotations [10]. One could of course learn an arbitrary

distribution for PΔRn
from training data, however, we dis-

count this alternative in this work as we want to impose as

few priors as possible on the expected pose of the subject.

Tractable Max-Product In general, the max-product

algorithm 1 has a time complexity of O(|ΩX |2) =
O(|ΩT |2|ΩR|2). However, each of the pose prior we sug-

gested allows a speed up of the costly innermost loop max-

imization (6).

The fixed length prior is deterministic. Thus when look-

ing for the optimal state xn = (tn, rn), we know the transla-

tion tn and only need to search over all rotations rn. Also,

if there is a uniform prior on rotation, we can ignore the

constant normalization factor. Using algorithm 2 it is then

possible to speed up the optimization to O(|ΩT ||ΩR|).
If we still assume fixed limb lengths but a hard rota-

tion prior we can use algorithm 3, with time complexity

O(|ΩT ||ΩR|2). This is the worst complexity of any com-

bination of the suggested translation and rotation priors.

2.2. Discrete Search Grid

Using dynamic programming to search for the optimal

pose requires a discretization of the state space. We have

two requirements for this discretization. Firstly, the points

should be evenly spread. Secondly, if we add translations

or compose rotations, it should be easy to find the resulting

discrete point. It is easy to construct such a discretization

for the translations ΩT ⊂ R
3, but not as easy for the rota-

Algorithm 3 Max-product imposing view, skeleton and

joint angle constraints

mn(xn) := lnPIn|Xn(in | xn) ∀n
for n := N to 2

p := pa(n)
for tp ∈ ΩT

for rp ∈ ΩR

tn := tp + rpdn
m̃ := max

Δrn∈Qn

mn((tn, rpΔrn))

mp((tp, rp)) := mp((tp, rp)) + m̃
end

end
end
x∗
1 := argmax

x1

m1(x1)

for n := 2 to N
p := pa(n)
t∗n := t∗p + r∗pdn
r∗n := argmax

Δrn∈Qn

mn((t
∗
n, r

∗
pΔrn))

end

tions ΩR ⊂ SO(3).

Translation Discretization We assume the subject is

roughly localized by a bounding rectangle in each image.

We also assume that the cameras are calibrated. Therefore

we can compute a bounding cube (fig. 1). The discrete set

of translations ΩT is created as a grid covering this cube

(fig. 3).

Rotation Discretization We use best-candidate sampling

[13] to generate a discrete set of rotations ΩR that are evenly

spread. First a large set of candidates are generated by sam-

pling rotations uniformly. Then only the candidates furthest

away from each other are kept.

For this process we use the unit quaternion representa-

tion of rotations [6]. It describes a rotation as a point on the

hypersphere S
3 embedded in R

4. It is possible to sample

uniformly from SO(3) by sampling points on S
3 uniformly.

To do this simply sample a vector in R
4 from an isotropic

and zero mean normal distribution and normalize this vec-

tor.

After many candidates have been generated we want to

retain those samples furthest away from each other. This

requires measuring distances between points in SO(3). We

use the geodesic distance d(q1, q2) = 2 arccos(|q1 · q2|),
where q1 · q2 is the ordinary dot-product of the unit quater-

nions and not the quaternion product. Finally, we convert

the rotations from unit quaternions to rotation matrices. The

discrete set of rotations ΩR now fulfills our first requirement

of being evenly spread (fig. 3).
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Figure 3. The discrete set of translations ΩT is generated as a grid

covering a bounding cube. To the left we show an example with

|ΩT | = 33. The discrete set of rotations ΩR is generated by sam-

pling unit quaternions, i.e. points on a hypersphere. In the middle

we show |ΩR| = 103 samples from a uniform distribution and to

the right we show the same number of best-candidate samples.

Ideally, we would like the composition of two rotations

in ΩR to be also in ΩR. This will, in general, not be the case.

We would then like to use the closest grid point. How can

we know which grid point that is? A simple solution is to

precompute a table with this information. If we have |ΩR|
rotation states we precompute a |ΩR| × |ΩR| table where

the element with indices i and j is the index to the rotation

in ΩR that is closest to the composition of the rotations with

indices i and j. This matrix can potentially be precomputed

in O(|ΩR|3) time, by comparing the distances to all grid

points. In section 3 we explore the tractable number of grid

points.

2.3. Avoiding Self-Intersections

Using a tree graph and the max-product algorithm to find

the solution, is a double-edged sword. On the one hand,

it allows us to find the global optimum in a tractable way.

But on the other hand, assuming the dependencies between

the variables in the model form a tree has its limitations. A

typical problem is the double counting of image evidence. If

some parts have a similar appearance, typically e.g. the left

and right arms and legs, the optimal score often has them

placed at the same position.

2D Pose Estimation This problem is especially prevalent

in 2D where there is an inherent ambiguity, since two parts

may very well project to the same image area even if they

do not occupy the same volume in 3D. To reason in this case

one needs to recognize whether the two parts really occlude

each other or not. Researchers have addressed this problem,

but frequently it involves dropping the tree assumption and

using a global objective function which couples all parts

[2, 14, 1]. The optimization then becomes difficult and the

solution found may not be the global optimum.

3D Pose Estimation In 3D we do not have the same ambi-

guity as in 2D. Whereas the parts should be allowed to inter-

sect in 2D, they should never be allowed to intersect in 3D.

However, preventing all parts from intersecting each other

would still require a full graph instead of a tree. Instead, we

propose a two-step algorithm that prevents a subset of the

parts from intersecting. First we find the global optimum of

the original objective function, which does not take inter-

sections into account. To deal with the possible intersection

of e.g. the legs, we then consider the hypotheses:

1. Left leg has been estimated correctly.

2. Right leg has been estimated correctly.

We then evaluate each of these hypotheses in turn by run-

ning the algorithm a second time. In this second stage we

fix the part which is assumed to be correctly estimated. The

corresponding mirror part is then prevented to intersect the

fixed part. This can be done by modifying the appearance

scores PIn|Xn
. A part can be fixed by setting all states, ex-

cept the fixed one, to have a zero probability. Similarly, we

can prevent a part from intersecting its fixed mirror part by

zeroing out all states where this happen. To allow simple

and fast intersection tests we model the parts as capsules,

i.e. cylinders with spherical ends.

We then find the global optimum to this modified cost

function using the max-product algorithm over the same

tree graph. This gives a new pose whose parts do not inter-

sect and its associated score. We then choose the hypothesis

with the highest score (fig. 5).

3. Experiments
To test our algorithm in a realistic scenario, we recorded

a sequence from a professional football game using three

cameras, each having a resolution of 1920 × 1080 pixels

and a frame-rate of 25Hz. The cameramen followed the

same player as he moved around the pitch. We annotated

the 2D pose in each view for 214 consecutive frames. Us-

ing these 2D measurements the cameras were synchronized

and calibrated and the pose was reconstructed in 3D, using

affine factorization [4]. We use these 2D measurements and

3D reconstruction as the ground truth to evaluate our algo-

rithm. Our primary questions are:

• Are pictorial structures in 3D a practical solution?

• What is the necessary level of discretization needed to

represent human poses in 3D?

• Is this discretization level computationally tractable?

To answer these questions we first investigate what levels of

discretizations are tractable in terms of memory consump-

tion. We then consider the computation time for these dis-

cretizations. Finally, we evaluate if these discretizations can

represent poses with the desired accuracy. These experi-

ments are discussed in 3.1.

Our next set of experiments focus on applying the algo-

rithm to measurements extracted automatically from each

view, using 2D part detectors. These experiments are dis-

cussed in 3.2.
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| ΩR | 43 83 163

| ΩT |
163 10 MB 84 MB 670 MB

323 84 MB 670 MB 5.4 GB

643 670 MB 5.4 GB 43 GB

Table 1. Memory consumption for different discretizations.

View & Skeleton View, Skeleton &
Constraints Joint Angle Constraints

| ΩR | 43 83 163 43 83 163

| ΩT |
163 0.021 s 0.14 s 1.0 s 0.041 s 2.4 s 5.5 min

323 0.14 s 1.0 s 8.4 s 0.42 s 23 s 69 min

643 1.1 s 8.7 s 5.1 s 4.9 min

Table 2. Computation time for different discretizations.

3.1. Tractability

A key factor that affects the tractability of all the con-

sidered max-product algorithms (1, 2, 3) is the memory

used to store all scores/messages, i.e. the m-array. It

has N × |ΩT | × |ΩR| elements. In our implementation

N = 10 and 4 bytes are used for each element. In table

1 we list the memory requirements for this array for dif-

ferent translation ΩT and rotation ΩR discretizations. All

discretizations listed in the table, except the bottom right

corner, fit into the 16 GB RAM of our test system.

We next look at the computation time for running al-

gorithm 2 and 3 for different discretizations. The algo-

rithms were implemented in C++ using OpenMP to par-

allelize the for-loops over ΩT . The computations were

run on an Intel Core2 Quad processor with four 2.8 GHz

cores. The result is summarized in table 2. Algorithm 2 im-

poses view and skeleton constraints. Its time complexity of

O(|ΩT ||ΩR|) is confirmed by the table. Algorithm 3 addi-

tionally imposes joint angle constraints. Its time complexity

of O(|ΩT ||ΩR|2) is approximately matched by the table.

Finally, we explore what level of discretization that is

necessary to obtain an acceptable estimate of the 3D pose.

To perform this evaluation we use synthetically generated

scores for PIc
n|Xn

. This avoids conflating inaccuracies in

the measurement process with the coarseness of the grid

discretization, when analyzing the cause of errors in the fi-

nal 3D pose estimate. The synthetic scores are computed

from 2D pose annotations. Each part is modeled as a line

segment. Let the annotated start and end points of part n in

view c be denoted by ŝ(icn) and ê(icn). If the part is in state

xn the projected start and end points are denoted scn(xn)
and ecn(xn). Our synthetic appearance score is then the dif-

ference between the projected and annotated end points:

lnPIc
n|Xn

(icn | xn) =− ‖scn(xn)− ŝ(icn)‖2+
− ‖ecn(xn)− ê(icn)‖2 (18)

|ΩR| 43 83 163

|ΩT|

163

323

643

Figure 4. Evaluation of the necessary detail required for the dis-

cretization grid. Synthetic appearance scores are used. The esti-

mated 3D pose (red) is the pose closest to the ground truth pose

(blue), that is possible to represent with the given discretization.

Figure 4 shows the result of running algorithm 2 with

these synthetic scores, for different levels of discretizations.

We conclude that having |ΩT | ≥ 323 and |ΩR| ≥ 83 gives

enough detail. Since this is tractable both in terms of mem-

ory and speed we conclude that algorithm 2 is practical and

tractable.

We have observed that algorithm 3 seems to require a

finer discretization, |ΩR| ≥ 163. This is on the border of

being tractable in terms of speed of our current implemen-

tation. We believe this extra level of detail is needed since

the hard joint angle constraints remove some of the local

rotations of each part. More specifically, it removes some

of the rotations that approximately rotate the part around its

own axis, but result in slightly different end positions. This

loss of precision needs to be compensated by having more

global rotations.

3.2. Automatic Part Detection

These experiments test automatic pose estimation using

algorithm 2. To do this we implemented simple 2D part de-

tectors based on the HOG-descriptor [5]. We model each

part as a cylinder and approximate its projection to an im-

age as a rectangle. Each 3D rotation then corresponds to a

2D rotation and change of aspect ratio of this rectangle. To

be invariant to this effect, we warp the rectangle to a canon-
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View & Skeleton View, Skeleton &
Constraints Intersection Constraints

Parts C=1 C=2 C=3 C=1 C=2 C=3

Pelvis 97 57 97 35 100 50 97 57 97 35 100 55

Torso 87 40 90 48 100 65 87 38 90 48 100 55

Upper Arms 14 2 55 8 55 15 14 2 53 8 60 20

Lower Arms 6 0 30 6 35 18 6 0 28 7 35 15

Upper Legs 62 8 87 26 90 45 63 9 88 19 100 48

Lower Legs 33 5 68 35 70 57 41 7 82 38 90 60

All Parts 41 13 67 23 70 39 43 13 69 23 77 40

Table 3. A quantitative summary of the results of our pose esti-

mation to real images from 20 different frames. PCP scores in %

with α = 0.5 and α = 0.2 (in blue) are used to measure perfor-

mance of pose estimation using 1, 2 or 3 cameras. We first only

impose view and skeleton constraints. We then add intersection

constraints for the lower legs.

ical square. We let the HOG of this square represent the

appearance of the part.

Using 2D pose annotations we train a binary logistic re-

gression classifier [3], to allow a probabilistic interpretation,

for each part. We use 100 frames from the 3 camera views

for training. When testing on an image we evaluate the de-

tector for each 2D position and each 2D rotation and aspect

ratio of the rectangle.

After this has been done for all views we use these re-

sponse scores in look-up tables when evaluating the score

for each 3D position and 3D rotation. Each 3D position and

rotation of the part corresponds to a 2D position, rotation

and aspect ratio of the rectangle in each view. The scores

from the different views are aggregated using equation 3.

The quantitative results in this section are reported in

terms of PCP scores: percentage of correctly estimated

parts. A part is declared correctly estimated if:

‖ŝn − sn‖+ ‖ên − en‖
2

≤ α‖ŝn − ên‖ (19)

where ŝn and ên represent the ground truth 3D coordinates

of the start and end point of part n and sn and en the al-

gorithm’s estimate. We report scores for α = 0.2 and

α = 0.5 in table 3. The PCP score is more informative

than one based on the Euclidean distance, given the the dif-

ficulty of the data set and the precision of our simple 2D

part detectors. We test with and without the 3D intersection

constraints and using 1, 2 or 3 camera views.

Table 3 and figure 5 show that our simple 2D part de-

tectors are not very accurate. However, designing accurate

2D part detectors has not been our focus. The frame-work

supports any such detector. More importantly, the table and

figure show that given a 2D part detector, the 3D pictorial

structures frame-work can improve the accuracy of the es-

timation by imposing view, skeleton and intersection con-

straints in 3D.

4. Conclusions and Future Work

We have described and implemented a frame-work for

3D pictorial structures that can be used for multiple view

articulated pose estimation. Thanks to the discretization of

the search space a globally optimal pose can be computed.

We implemented two algorithms. The first algorithm (2)

imposes view and skeleton constraints. The second algo-

rithm (3) also imposes joint angle constraints. We have

shown that the first algorithm is tractable, whereas our im-

plementation of the second algorithm is on the border of be-

ing tractable in terms of speed, on our test system. We also

demonstrated how the problem of intersecting parts, com-

mon for tree-based models, can be dealt with more easily in

3D than 2D.

We see several interesting directions for future research.

Finding an efficient way of computing max-convolutions

over discrete subsets of SO(3) would speed up the second

algorithm, imposing joint angle constraints. A coarse-to-

fine or branch and bound approach could also help to re-

duce the search in general. One could also utilize the paral-

lel nature of the max-product algorithm by exploring GPU

implementations.

In our implementation we compute the image evidence

of the individual parts using 2D part detectors that are rather

basic and not that accurate. Better performance can be ex-

pected if this frame-work independent component is instead

based on a state-of-the-art 2D pose estimator. Now that the

tractability of the frame-work has been shown, we plan to

refine this appearance component and thouroughly compare

the performance with alternative 3D pose estimators. An-

other interesting direction for future research is how to au-

tomatically calibrate the cameras.
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