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up being faster by heuristically randomly sampling bound-

ing boxes without absorbing the cost of firing the detector.

In this paper, we propose two changes that allow struc-

tured SVMs to be at least as fast as their binary SVM coun-

terparts for problems such as object detection, deformable

part models, and multiclass classification. First, we apply

ideas from online sub-gradient methods [21, 19] and se-

quential dual optimization algorithms [11, 16], which are

inclusive of the fastest algorithms for training linear SVMs

and often significantly faster than the cutting plane algo-

rithm used by SVMstruct (a popular solver for structured

SVMs). Second, we allow problem-specific knowledge to

be injected into the optimization algorithm by incorporat-

ing a user-defined importance sampling function. Here, our

optimization algorithm takes an update step with respect to

a set of intelligently selected output labels (e.g., a set of

bounding boxes in a particular image that have high training

error with respect to the current detector). This change al-

lows the method to be a superset of techniques used by con-

ventional structured learning methods and commonly used

heuristics for mapping problems into binary classification

problems, with additional parameters to explore to tailor op-

timization to a particular application.

Our main contributions are as follows: 1) We introduce

SVM-IS, a fast structured SVM solver that is easy to apply

to novel problems. 2) We show how our solver can be used

to create faster learning algorithms for cost-sensitive multi-

class SVMs, object detection, and deformable part models.

We demonstrate our results on ImageNet and CUB-

200-2011, two challenging, large scale datasets for multi-

class classification and deformable part model training, and

demonstrate reductions in train time for deformable part

model training and cost-sensitive multiclass SVM learning

by a factor of ∼ 100 for deformable part models, and ∼ 20
for cost-sensitive multiclass classification.

2. Background and Related Work

Structured SVMs: Structured SVMs [23, 25, 24] provide a

method for training a system to predict a multidimensional

structured output, such as a bounding box, set of part lo-

cations, or segmentation. They minimize a convex upper

bound on a customizable loss function. Structured SVMs

are a superset of SVM-based learning algorithms, which in-

cludes many of the most popular and highest performing al-

gorithms for object detection [12, 7, 3], and multiclass clas-

sification [17, 9]. They have been applied to training object

detectors using more appropriate loss functions [2], mul-

ticlass SVMs with customizable class confusion costs [5],

and deformable part models [27, 4, 20].

Fast Solvers For Large Scale Linear SVMs: Linear

kernel SVMs have been shown to have dramatically bet-

ter computational properties than non-linear kernel SVMs

for both training and testing. Whereas non-linear kernel

SVMs train in time that is at least quadratic in the num-

ber of training examples, solvers such as Liblinear [11]

and SVMperf [14] train in linear time, or in time that does

not even depend on the size of the training set (at least

in expectation) [21]. Among fast linear SVM solvers, on-

line sub-gradient algorithms [21] and sequential dual algo-

rithms [11] are faster than methods that train in batch.

Fast Solvers For Large Scale Structured SVMs: The ba-

sic convex optimization methods used by the above algo-

rithms are general to many convex optimization problems

such as structured SVMs [19, 6, 25]; however, there is a

comparative scarcity of publicly available fast methods for

structured SVMs. Kakade and Shalev-Shwartz provided a

template algorithm for developing fast optimization algo-

rithms for novel strongly convex optimization problems and

a theoretical framework for studying their statistical conver-

gence properties [15]. Analysis of our algorithm is based

on this template. Guzman et al. [13] recently introduced

a cutting-plane-based structured SVM solver that incorpo-

rates a similar idea to our importance sampling routine. Our

method is different in that it is based on extending sequen-

tial dual and sub-gradient algorithms (which are often much

faster than cutting plane algorithms).

3. Algorithm and Approach

We first briefly discuss notation and the problem defini-

tion, then introduce our algorithms in Sections 3.1-3.2.

Structured Learning: Let X be an input example and

Y = y1...yO be a multidimensional structured output defin-

ing its ground truth label. For example, for deformable part

models, X is an image and each yp ∈ Y defines the loca-

tion of a part in the image. A structured prediction function

predicts the label argmaxY s(X,Y ) with highest score:

s(X,Y ) = 〈w,Ψ(X,Y )〉 (1)

where s(X,Y ) is a score measuring the goodness of a par-

ticular label Y , Ψ(X,Y ) is a feature space extracted with

respect to label Y (e.g., features extracted around part lo-

cations y1...yO), and w is a learned vector of weights. Let

∆(Y, Yi) be a customizable loss function associated with

predicting label Y when the true label is Yi. For example,

∆(Y, Yi) can be a measure of the overlap between predicted

part locations and their ground truth locations. Structured

SVM learning minimizes the training error:

Fn(w) =

n
∑

i=1

f(w;Zi) (2)

f(w;Zi) =
λ

2
‖w‖2 + ℓ(w, Zi) (3)

ℓ(w, Zi) =max
Y

(s(Xi, Y ) + ∆(Y, Yi))− s(Xi, Yi) (4)

where each Zi = (Xi, Yi) is a training example, λ is a

regularization constant. The function ℓ(w, Zi) is an upper
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bound on ∆(Y, Yi) that is convex in w. Let Ȳi be the value

of Y that maximizes ℓ(w, Zi):

Ȳi = argmax
Y

(s(Xi, Y ) + ∆(Y, Yi)) (5)

Solving Eq 5 resembles a prediction problem (Eq 1) and is

the primary computation for many structured learning opti-

mization algorithms1. The set of problems that are appro-

priate for structured SVMs is limited to problems and loss

functions for which Eq 5 is efficiently solvable.

Dual Problem: Eq 2 can be represented by its equivalent

dual problem

max
α1...αn

Dn(α1...αn) = min
w

Fn(w) (6)

The dual objective is often useful for deriving optimiza-

tion algorithms and theoretical guarantees. The problem

maxα1,...,αn
Dn(α1...αn) can be written as (see [25])

max
α1...αn

−
1

2λn

∥

∥

∥

∥

∥

∥

∑

i,Y

αi(Y )vi(Y )

∥

∥

∥

∥

∥

∥

2

+
∑

i,Y

αi(Y )∆(Y, Yi)

s.t., ∀i

(

∀Y , αi(Y ) ≥ 0,
∑

Y

αi(Y ) ≤ 1

)

(7)

where each vi(Y ) is a feature vector

vi(Y ) = Ψ(Xi, Y )−Ψ(Xi, Yi) (8)

that is weighted by a scalar αi(Y ). For example, for sliding

window based object detection, vi(Y ) is a feature vector for

every possible bounding box Y in image Xi. The bound-

ing box feature vectors vi(Y ) that have non-zero weights

αi(Y ) correspond to bounding boxes in the margin (e.g.,

have non-zero hinge loss) and can be thought of as “sup-

port vectors”. Although this is a dauntingly large number

of parameters to learn (a parameter αi(Y ) for every bound-

ing box in every image), for various ǫ-accurate approximate

optimization algorithms, the number of non-zero αi(Y ) pa-

rameters will be independent of the size of structured output

space (the number of bounding boxes per image).

The relationship between the dual parameters α and pri-

mal parameters w is

w(α) = −
1

λn

∑

i,Y

αi(Y )vi(Y ) (9)

3.1. Multi Sample Online Dual Ascent Algorithm

We consider two different related dual coordinate ascent

optimization algorithms, which work by sequentially pro-

cessing examples and approximately maximizing the dual

1Note that a sub-gradient ∇ℓ(w, Zi) of ℓ(w, Zi) can be computed

from is computable from Ȳi as ℓ(w, Zi) = Ψ(Xi, Ȳi)−Ψ(Xi, Yi)

objective D(·) with respect to the parameters αi of one ex-

ample i at a time. Fast algorithms for linear SVMs such as

Pegasos and Liblinear can be understood as variants of these

algorithms; whereas our algorithm has additional choices

that make it more appropriate for tweaking optimization

speed for a particular application.

The first algorithm, shown in Algorithm 1 processes

one example i(t) in each timestep t. Let Ft(w) and

Dt(α1, ..., αt) correspond to an online version of the pri-

mal and dual structured SVM objectives, where in contrast

to Eq 2 error is accumulated over each processed example:

Ft(w) =
∑t

s=1 f(w;Zi(s)) (10)

Note that if each i(s) is selected independently at ran-

dom, the objectives have equivalent expected values:

E[Ft(w)/t] = E[Fn(w)/n]. In each timestep, the algo-

rithm solves for weights on each sample, with the objective

of maximally increasing the online dual objective

∆Dt(αt) = Dt(α1, ..., αt)−Dt−1(α1, ..., αt−1) (11)

Examining Eq 7-9, this is equivalent to the QP problem:

max
αt

1

2
− αT

t Qαt + ℓTt αt + c, s.t. αj
t ≥ 0,

∑

j

αj
t ≤ 1

(12)

where ℓt = [ℓ1t , ..., ℓ
K
t ] and αt = [α1

t , ..., α
K
t ] are vectors, c

is a constant, Q is a K ×K matrix with elements

Qjk =

〈

v
j
t ,v

k
t

〉

λt
, c =

λ(t− 1)‖wt−1‖2

2t
(13)

and αj
t , v

j
t , and ℓjt are shorthand for per sample weights

αt(Ȳ
j
t ), features vt(Ȳ

j
t ), and loss 〈wt−1,vj

t 〉+∆(Ȳ j
t , Yt),

respectively. Using Eq 9, this will result in an update of the

model weights wt according to:

wt ←
t− 1

t
wt−1 −

1

λt

K
∑

j=1

αj
tv

j
t (14)

Let R be a bound on the magnitude of the feature space

‖Ψ(X,Y )‖ ≤ R:

Theorem 3.1 Algorithm 1 obtains an ǫ-accurate solution

in at most Õ(R
2

λǫ
) iterations in expectation, for any sub-

routine IMPORTANCESAMPLE that includes Ȳ 1
t = Ȳi

(Eq 5) and any approximate solver on line 7 that is at least

as good as the one obtained by setting α1
t = 1.

This theorem is a direct consequence of Theorem 1 from

Kakade and Shalev-Shwartz [15]. Note that this bound does

not depend directly on the size of the training set. The proof

is based on the observation that choosing α1
t = 1 increases

Dt by a predictable amount (see supplementary material).
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Algorithm 1 SVM-IS-Online

1: Initialize to zero: w0

2: for t = 1... do

3: Choose an example i (randomly)

4: Ȳ 1
t ...Ȳ

K
t ← IMPORTANCESAMPLE(Xi, Yi,w

t−1)
5: ∀j , v

j
t ← Ψ(Xi, Ȳ

j
i )−Ψ(Xi, Yi)

ℓjt ← 〈w
t−1,vj

t 〉+∆(Ȳ j
i , Yi)

6: Define ∆Dt := −
1
2α

TQα+ ℓTt α+ c

Qjk :=
〈vj

t ,v
k
t 〉

λt
, c = λ(t−1)‖wt−1‖2

2t
7: Approx. solve αt ← argmaxα ∆Dt(α)

s.t. ∀j , α
j
t ≥ 0,

∑

j α
j
t ≤ 1

8: wt ← t−1
t
wt−1 −

∑K
j=1 α

j
tv

j
t

λt

9: end for

Optimizing Line 7: A better solution to Eq 12 (by incor-

porating α2
t ...α

K
t ) will converge at least as quickly, with a

larger increase yielding faster convergence. Due to space

limitations, we discuss two efficient algorithms for solving

Eq 12 in the supplementary material. The runtime for both

such algorithms is roughly equal to the time needed to com-

pute one dot product 〈wt−1,vt(Ȳ
j
t )〉 per sample j. The first

algorithm is a general purpose one-pass approximate algo-

rithm, whereas the 2nd is an exact algorithm that applies to

multiclass classification problems.

Heuristics for choosing samples: Examining Eq 12, given

a sample set Ȳ 1
t ...Ȳ

j−1
t , the utility of a new sample Ȳ j

t

is proportional to αt(Ȳ
j
t )
(

− 1
2

∑j

k=1 αt(Ȳ
k
t )Qjk + ℓjt

)

.

This will be high if ℓjt = s(Xt, Ȳ
j
t )+∆(Ȳ j

t , Yt)−s(Xt, Yt)
is high (the loss associated with sample Ȳ j

t ) and each Qij

is low. Thus in general we should favor samples with high

loss that are as uncorrelated as possible (Q is as close to a

diagonal matrix as possible).

Detecting Convergence: Convergence is detected based

on the primal dual gap F (w)−D(α) 2 is less than ǫ. Note

that in Algorithms 1-2 D(α) can be efficiently computed

by summing ∆D in each iteration. Rather than explicitly

compute
F (w)

n
, we approximate it by the accumulated loss

∑t
s=1 f(ws−1;Zi(s))

t
, which exceeds

F (w)
n

if the primal ob-

jective tends to be decreasing.

3.2. MultiSample Dual Ascent Algorithm

A similar algorithm, depicted in Algorithm 2, also se-

quentially processes examples. It differs from Algorithm 1

primarily with respect to what happens when an example is

processed multiple times. On later iterations, it optimizes a

change ∆α to the parameters αi for example i:

∆Dn(∆αi) = Dn(α1, ..., αi+∆αi, ..., αn)−Dn(α1, ..., αn)
(15)

2This upperbounds the training error, because by weak duality, for any

α,
D(α)≤minw F (w)

n

Algorithm 2 SVM-IS

1: Initialize to zero: w0, t,
{

v̄i, ℓ̄i, ᾱi

}n

i=1
2: for t = 1... do

3: Choose an example i (randomly)

4: Ȳ 1
t ...Ȳ

K
t ← IMPORTANCESAMPLE(Xi, Yi,w

t−1)
5: Define vt := [v1

t ...v
K
t , v̄i], ℓt := [ℓ1t ...ℓ

K
t , ℓ̄i]

∆α := [α1
t ...α

K
t ,∆ᾱi], αt := [α1

t ...α
K
t , ᾱi +∆ᾱi]

∆Dn := − 1
2∆α

TQ∆α+ ℓTt ∆α, Qjk :=
〈vj

t ,v
k
t 〉

λn

6: Approx. solve ∆αt ← argmax∆α ∆Dn(∆α)
s.t. ∀K+1

j=1 , α
j
t ≥ 0,

∑

j α
j
t ≤ 1

7: wt ← wt−1 −
∑K+1

j=1 ∆α
j
tv

j
t

λn

8: Merge samples: set v̄i and ℓ̄i to the average of vt and

ℓt weighted by αt, and set ᾱi to the sum of αt

9: end for

While pseudo-code is provided in Algorithm 2, we discuss

derivation and properties in the supplementary material. By

the arguments presented in [22], it shares the same worst

case convergence rate as Algorithm 1, typically with faster

convergence when making multiple passes through the data.

3.3. Comparison to Other Algorithms

In this section, we briefly mention various possible opti-

mization algorithms for structured SVMs (all of which are

evaluated in our experimental results).

Cutting Plane Algorithm: SVMstruct–a popular software

package for structured SVMs–optimizes Eq 2 using a cut-

ting plane algorithm. An n-slack variety of SVMstruct

solves Eq 5 for all n training examples before solving a

QP problem, whereas a 1-slack variety solves a QP prob-

lem after each time Eq 5 is solved for a particular example.

The n-slack method is asymptotically slower (by a factor

of n) than the 1-slack method and our algorithm in terms

of the number of times the inference algorithm will be in-

voked. For the 1-slack method, solving the QP problem can

become intractibly slow.

Stochastic Sub-Gradient Descent: Stochastic gradient de-

scent (SGD) is a very simple algorithm with surprisingly

good theoretical guarantees (for certain implementations).

SGD iterates over each example sequentially, taking an up-

date step:

wt ← wt−1 − ηt∇f(w
t−1;Zt) (16)

where ∇f(wt−1;Zt) is the sub-gradient of Eq 3. A

Pegasos-like update [21] uses a decaying step size ηt =
1
λt

followed by a projective step3. Applied to structured

SVMs [19], this simple algorithm has as good asymptotic

properties as the 1-slack SVMstruct algorithm in terms of

the number of times inference will be invoked (and asymp-

totically better properties than the n-slack algorithm), and

3
w

t ←
min(1/

√
λ,‖wt‖)

‖wt‖ w
t
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doesn’t suffer from slowness of solving a QP of growing

size. One can verify that SGD is equivalent to Algorithm 1

with K = 1, Ȳ 1
t = Ȳ , and choosing an update α1

t = 1,

meeting the criteria of Theorem 3.1. In practice, it con-

verges more slowly, is more dependent on the regularization

parameter, and has no easy way to test for convergence.

4. Applications

In this section, we show how Algorithm 1-2 can be ap-

plied to a variety of popular learning problems, including

cost-sensitive multiclass SVMs, object detection, and de-

formable part models. The general template for applying

our method to new problems is:

1. Implement a feature extraction routine Ψ(X,Y )

2. Implement a routine to solve Eq 5:

Ȳt = argmaxY (s(Xt, Y ) + ∆(Y, Yt)), which is sim-

ilar to an inference problem

3. Choose a sample set Ȳ 1
t , ..., Ȳ

K
t that includes Ȳt. Fa-

vor samples with high loss s(Xt, Ȳ
j
t )+∆(Ȳ j

t , Yt), and

where 〈vt(Ȳ
i
t ),vt(Ȳ

j
t )〉 tends to be small for i 6= j

4.1. CostSensitive Multiclass SVMs

Given a training set of image-label pairs {(Xi, Yi)}
n
i=1

where Yi ∈ 1...C is a class label, a cost-sensitive multiclass

SVM solves the optimization problem:

FC
n (w) = n

(

λ

2
‖w‖2 +

1

n

n
∑

i=1

ǫi

)

(17)

s.t., ∀i,c, 〈wc, φ(Xi)〉 +∆C(c, Yi) ≤ 〈wYi
, φ(Xi)〉+ ǫi

where φ(X) is a feature vector of length d, each wc is a vec-

tor of weights for class c, w = [w1, ...,wC ] concatenates

the weights for all classes, and ∆C(c, Yi) is a confusion cost

associated with predicting class c when the true label is Yi.
As in [25], this problem is solvable using a structured SVM,

where Ψ(X,Y ) concatenates features for each class:

ΨC(X,Y ) = [ψ1(X,Y ), ..., ψC(X,Y )] (18)

ψc(X,Y ) =

{

φ(X) if Y = c

0 otherwise
(19)

Choosing samples: For this problem, we choose a dense

sample set that includes every possible class label 1, ..., C.

In the supplementary material, we derive a fast exact solver

for Eq 12. The time of this update step is roughly equal to

the time to evaluate one dot product 〈w,ΨC(X,Y )〉.

4.2. Sliding Window Object Detection

A sliding window object detector can be trained using

a structured SVM [2], where Y = {x, y, scale} encodes

a bounding box and ΨB(X,Y ) is a vector of features ex-

tracted at Y . Let ∆B(Y, Yi) be an arbitrary loss function

associated with predicting bounding box Y when the true

bounding box is Yi. The sliding window detector can be

trained by optimizing the structured SVM objective (Eq 2).

Let ∆B
i encode all values of ∆B(Y, Yi) into an array, with

∆B
i [Y ] = ∆B(Y, Yi). Similarly, let Mi be an array of slid-

ing window responses, such that Mi[Y ] = 〈w,Ψ(Xi, Y )〉,
and let Li = Mi +∆B

i . Note that

Ȳi =argmax
Y

(〈w,Ψ(Xi, Y )〉+∆(Y, Yi))

= argmax
Y ′

Li[Y
′] (20)

Choosing samples: We choose a sparse sample set of

bounding boxes Ȳ 1
t ...Ȳ

K
t , that are the result of running the

greedy non-maximal suppression technique used in [10].

This method greedily selects the bounding box with highest

loss Ȳ j = argmaxY Li[Y ], then suppresses all overlap-

ping bounding boxes by setting Li[Y ]← −∞ for all Y that

overlap with Ȳ j . The motivation behind this sampling tech-

nique is that overlapping bounding boxes will tend to have

more correlated features, such that 〈Ψ(Xt, Ȳ
j
t ),Ψ(Xt, Ȳ

i
t )〉

is more likely to be high.

4.3. Deformable Part Model Based Detection

A Felzenszwalb-like deformable part model [12] can be

trained using a structured SVM, where Y = y1, ..., yP
encodes a set of part locations, each of which is rep-

resented using a 4-tuple yp = {xp, yp, scalep, aspectp},
where aspectp defines a mixture component index (e.g.,

it toggles between different appearance and spatial models

for side view, frontal view, etc.), and parts can have tree-

structured dependencies with spring costs connecting par-

ent and child parts. Details of the mapping into structured

SVMs are presented in [27, 4]. These methods concatenate

appearance features and spatial offsets for all part-aspect

pairs into a structured feature space ΨP (X,Y ). The la-

bel Ȳi can be efficiently solved for using standard dynamic

programming algorithms for pictorial structure inference.

Similar to the method described in the previous section,

this is implemented using a modified unary detection score

L
p

i = M
p

i +∆
p
i for each part p, where ∆

p
i [yp] encodes the

loss associated with placing part p at location yp.

Choosing samples: We empirically evaluate two different

importance sampling routines. The first is the same bound-

ing box non-maximal suppression technique described in

the previous section, applied to the score for the root of the

part tree after running dynamic programming.

The second is based on the observation that two

different samples Ȳ i
t and Ȳ j

t with different aspects

(mixture component assignments) will necessarily satisfy

〈Ψ(Xt, Ȳ
i
t ),Ψ(Xt, Ȳ

j
t )〉 = 0. We create a modified version

of the greedy non-maximal suppression method that favors

180818081810
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(b) Results on 5794 image training set
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Figure 3. Part Detection Results on CUB-200-2011: Qualitative results are shown in Fig. 2. (a-b) Results on training sets of size 400 and

5794, respectively. Our method SVM-IS converged orders of magnitude faster than popular learning methods, including the 1-slack and n-

slack varieties of SVM
struct and a method based on mining hard examples and training a binary classifier using Liblinear. Relative gains

became larger as the training set size increases. It was an order of magnitude faster than our implementation of other fast (non-publicly

available) online learning algorithms applied to structured learning, including stochastic gradient descent with a Pegasos-like update [19]

and the Online Passive Aggressive Update (PA-I) method from [6]. (c) A sweep though the parameter K indicate that computational

efficiency kept improving as we increased K from 1 up to 256; however, there was little gain moving beyond K = 64. Our proposed

sampling method outperforms one based on non-maximal suppression (bbox) by a factor of two.

SVMstruct on the larger set). All experiments were run on

a Dual 3.2GHz Intel Xeon with 4GB RAM.

Summary of results: Fig. 4(a) shows that the runtime

of our algorithm compares favorably to state-of-the-art spe-

cialized solvers for linear SVMs (e.g. Liblinear). It also

achieves stronger final results by optimizing the structured

loss directly 4. We compare runtimes of cost-sensitive SVM

methods in Fig. 4(b), and show that SVM-IS is at least one

order of magnitued faster than the only publicly availible

method, SVMstruct. It is also faster than two alternative

algorithms that we implemented: Stochastic Gradient De-

scent with a Pegasos-like update [21] and the Online Pas-

sive Aggressive Update (PA-I) method from [6]. Finally,

we perform a sweep over parameter K (see Fig. 4(c)) and

show that SVM-IS converges faster for higher values of K.

This is expected because the update for K = 200 takes

roughly the same amount of time as for K = 1, and allows

us to update weights for all classes (as opposed to weights

for a single class Ȳt).

5.3. Analysis of Results

Online/sequential vs. batch algorithms: Methods that

employ updates in batches the size of the training set are

slower by an asymptotic factor that scales with training

set size. This includes the n-slack version of SVMstruct

(shown as a cyan curve in Fig. 4 and Fig. 3), which takes

roughly 30 times longer to converge in the ImageNet exper-

iment and 100-1000 times longer in the CUB-200-2011 ex-

periment. The method based on mining hard negatives also

4Jia et al. [8] used a method for making a cost insensitive linear SVM

cost sensitive by estimating posterior probabilities from the svm decision

values. Our experience with this heuristic is that it was cumbersome, time-

consuming, and unreliable, and we do not apply this step

processes the dataset in batch and is slow to make progress.

Single sample vs. multi sample: The multi-sample up-

date reduces training time by a factor of approximately 5-

50 compared to single sample online updates (PA-I [6] and

SGD [19]) in the experiments that we have considered. This

is to be expected as the level of improvement is dependent

on structural properties of the problem: the more complex

the output space is, the more important the importance sam-

pling routine becomes.

Training with a single pass over the data: In Fig. 3a-b, we

draw a vertical dotted red line indicating the time it takes

to make one pass through the training set (where training

roughly equals test time). We see that for training sets of

size n = 400 and n = 5000, test error is close to saturation

point with only 1-2 passes through the training set. At the

same time, training error has not fully converged yet (See

Fig. 3c). This is somewhat surprising but not theoretically

unexpected [19, 21, 15] (see supplementary material).

Memory usage: An additional benefit of online/sequential

algorithms is that only one training example needs to be

loaded into memory at the same time. We have imple-

mented our method such that it can support datasets that

are larger than the size of memory.

Drawbacks/Weaknesses: First, our method is specific to

SVM-based learning algorithms (e.g., it excludes poten-

tially faster methods based on boosting or random forests).

Secondly, it is less easily parallelizable than some methods

based on binary classification (for example for 1-vs-all clas-

sifiers, one can train each binary classifier in parallel).

6. Conclusion

We introduced a fast structured SVM solver that is

shown to be significantly faster than existing methods based

181018101812
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(c) Effect of Parameter K

Figure 4. Results on ImageNet: (a) Our method converges at least as quickly as existing specialized solvers for linear SVMs, while

incorporation of cost-sensitive learning allows us to obtain lower hierarchical loss. (b) We implemented cost-sensitive versions of Stochastic

Gradient Descent with a Pegasos-like update [21] and the Online Passive Aggressive Update (PA-I) method from [6]. The proposed method

converges noticeably faster than [21, 6], and is a full order of magnitude faster than the publicaly availible SVM
struct. (c) A parameter

sweep of the K parameter of the importance sampling routine illustrate that it’s best to update model parameters for all classes (K=200).

on SVMstruct, mining hard negatives, or online/sequential

updates. It reduces train time by a factor of 20-1000

for cost-sensitive multiclass learning and deformable part

model training on Imagenet and CUB-200-2011. In future

work, we plan on running more extensive object detection

experiments. We would also like to apply our algorithm to

larger datasets, stronger alignment models, and other types

of problems like tracking, segmentation, and attribute vo-

cabulary learning.
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