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Abstract

In this paper we extend the “shape, illumination and re-
flectance from shading” (SIRFS) model [3, 4], which recov-
ers intrinsic scene properties from a single image. Though
SIRFS performs well on images of segmented objects, it per-
forms poorly on images of natural scenes, which contain
occlusion and spatially-varying illumination. We therefore
present Scene-SIRFS, a generalization of SIRFS in which
we have a mixture of shapes and a mixture of illuminations,
and those mixture components are embedded in a “soft”
segmentation of the input image. We additionally use the
noisy depth maps provided by RGB-D sensors (in this case,
the Kinect) to improve shape estimation. Our model takes
as input a single RGB-D image and produces as output an
improved depth map, a set of surface normals, a reflectance
image, a shading image, and a spatially varying model of il-
lumination. The output of our model can be used for graph-
ics applications, or for any application involving RGB-D
images.

1. Introduction
One of the core problems of computer vision is infer-

ring the properties of a scene (shape, surface normals, il-

lumination, reflectance, etc) that together produced a sin-

gle observed image. This challenge was first posed as the

“intrinsic images” problem [5], but over time this term has

come to mean the decomposition of an image into a “shad-

ing” image and a “reflectance” image, best exemplified by

the Retinex algorithm [15, 18]. Though much progress has

been made recently on this subset of the intrinsic images

problem [11, 12, 29], the most dramatic progress has come

from the SIRFS (“shape, illumination, and reflectance from

shading”) model [3, 4], which recovers shape and illumina-

tion in addition to shading and reflectance, and outperforms

standard “intrinsic image” approaches. SIRFS is severely

limited by its assumption that input images are segmented

images of single objects, illuminated under a single global

model of illumination. Natural images, in contrast, contain

many shapes which may occlude or support one another,

as well as complicated, spatially-varying illumination in the

form of shadows, attenuation, and interreflection.

In this paper, we address the problem of inferring a mix-
ture of shapes and a mixture of illuminations (and implicitly,

a shading image and a reflectance image) which explain a

natural scene. Initially, this problem may seem trivial: why

not use segmentation techniques to decompose an image

into its constituent objects or illuminations, and then apply

SIRFS to each segment? But this is a classic “chicken-or-

the-egg” problem, as we cannot reliably segment an image

into its constituent shapes and illuminations without first in-

ferring shape and illumination, and vice versa. Addition-

ally, regions of a scene viewed in isolation are often am-

biguous, which suggests that information must be shared

between regions. We must therefore unify the problems of

reconstruction (inferring intrinsic scene properties) and re-

organization (grouping an image into meaningful regions),

by jointly optimizing over a mixture of shapes, a mixture

of illuminations, and the corresponding embedding of each

mixture component in the image.

For our technique to work, our shape and light mixtures

must respect the structure of the image. We therefore em-

bed our mixtures in the normalized Laplacian of the image,

building on normalized cuts [27], as well as Laplacian em-

beddings [6] and spectral graph theory [8]. This is moti-

vated by the observation that variation in shape and illumi-

nation tends to produce gradients and contours in the image,

and so our mixtures of shapes and illuminations should be

embedded in a space that respects such image variation.

Using shading cues to infer shape, as we are attempting,

is understood to work poorly for recovering low-frequency

(coarse) shape information [2, 7]. Thankfully, depth data

from sensors such as the Kinect [10] is becoming increasing

commonplace, and is complementary to shading: binocu-

lar disparity (the principle by which the Kinect computes

depth) is accurate at coarse scales and inaccurate at fine

scales. We will therefore assume the input to our model

is an RGB-D image, where “D” is the depth map produced

by a sensor such as the Kinect. This makes our problem

easier, but in no way trivial — depth maps from sensors

such as the Kinect are noisy and incomplete for many rea-
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Figure 1. In 1(a) we have the input to our model: an RGB image and a Kinect depth map from the NYU Depth Dataset [28]. In 1(b)

we have the output of our model. Depth maps are visualized with hue corresponding to depth and luminance corresponding to slant, and

surface normals are visualized with hue corresponding to orientation, and saturation and luminance corresponding to slant. Mixtures are

visualized with hue corresponding to component in the mixture, and intensity corresponding to the probability assigned to that component.

Illumination is visualized by rendering a coarse grid of spheres under the spatially-varying illumination. In 1(c) and 1(d) we show the

reflectance and shading images produced by two intrinsic image techniques, where 1(d) is the state-of-the-art. See the supplementary

material for dozens of additional examples.

sons: occlusion of the structured light, dark objects, sen-

sor noise, alignment errors, quantization, and the inherent

physical limitations of binocular disparity. Attempts to use

raw depth maps from the Kinect for photometric applica-

tions therefore often fail badly. See Figures 1, 5, 6, and 7

for demonstrations of how noisy these depth maps are com-

pared to the depth maps that our model produces.

In Figure 1 we show the output of our model on an RGB-

D image from the NYU Depth Dataset [28]. Our model’s

depth map is a clear improvement over the raw sensor depth

map (missing regions have been filled in, noise has been re-

moved, detail has been added), our output shading and re-

flectance images look better than those of the best “intrinsic

image” algorithms, our shape mixture has separated the bed

in the foreground from the walls in the background, and

our recovered mixture of illuminations captures the com-

plicated illumination in the scene produced by the lamp.

Even “mistakes” produced by our model are compelling:

our model has attempted to reconstruct the shape of the con-

tents of the photos on the wall, and has modeled these con-

tents with a different illumination environment than the rest

of the scene, similarly to how a human might perceive an

image within an image. See the supplementary material for

dozens of additional examples of our output.

Some past work has addressed similar problems to our

own. Forsyth [9] used a spatially-varying model of illumi-

nation to address complicated illumination and interreflec-

tion, but did not address reflectance or scene-like shape oc-

clusion. Yu et al. [30] and Karsch et al. [16] have attempted

to recover the reflectance and illumination of a scene, but

assume known geometry and multiple images, or a user an-

notation of geometry and illumination, respectively. Hoeim

et al. [13] and Saxena et al. [26] present algorithms for de-

termining the “spatial layout” of a scene, but these shape

estimates are coarse, and these models do not recover illu-

mination, reflectance, or shading. Lee et al. [19] produces

shading and reflectance images given RGB-D data, but re-

quires a video and a fused depth map, and does not produce

an illumination model or a refined shape.

Our paper is as follows: in Section 2 we review SIRFS,

in Section 3 we introduce Scene-SIRFS, and in Section 4

we introduce the embedding used by our shape and illumi-

nation mixtures. In Sections 5 and 6 we present our priors

on shape and illumination (our shape prior incorporates the

input depth map from the Kinect), and in Section 7 we show

how we optimize the resulting inference problem. In Sec-

tions 8 and 9 we present experiments on pseudo-synthetic

and real RGB-D data, and in Section 10 we conclude.

2. SIRFS
Our model builds upon the “shape, illumination, and re-

flectance from shading” (SIRFS) model [3, 4], which is a

framework for recovering intrinsic scene properties from a

single image of a segmented object. SIRFS can be thought

of as an extension of classic shape-from-shading models

[14] in which reflectance and illumination are recovered in

addition to shape. Formally, the SIRFS problem formula-

tion is:

minimize
R,Z,L

g(R) + f(Z) + h(L)

subject to I = R+ S(Z,L) (1)

Where R is a log-reflectance image, Z is a depth-map, L
is a spherical-harmonic model of illumination [25], and

S(Z,L) is a “rendering engine” which produces a log-

shading image given Z and L. Z and R are “images” with

the same dimensions as I , and L is a 27-dimensional vec-

tor. g(R), f(Z), and h(L) are cost functions for reflectance,
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shape, and illumination respectively, and can be viewed

(roughly) as negative log-likelihoods. We constrain the ren-

dering of our scene propertiesR+S(Z,L) to be equal to the

observed log-intensity image I . Solving this problem cor-

responds to searching for the least costly (or most likely)

explanation {Z,R,L} for image I .

Though this model outperforms other intrinsic image

techniques, it is critically limited by the requirement that

the image contain a single, segmented object. This limita-

tion is due to several factors: 1) SIRFS considers shapes to

be composed of a single smooth depth-map Z, and there-

fore cannot model depth discontinuities, occlusion, etc. 2)

SIRFS has a single global model of illumination L, but nat-

ural scenes contain spatially-varying illumination due to at-

tenuation, interreflection, cast and attached shadows, etc. 3)

SIRFS uses the occluding contour of the object [17], infor-

mation which is not explicit in natural scenes.

To address these shortcomings, we will use a mixture

of shapes and illuminations embedded in a soft segmenta-

tion of the scene, and we will use a Kinect depth-map as a

surrogate for the information provided by the missing con-

tour cue and to address the inherent limitation of shading for

low-frequency shape reconstruction [2, 7]. We call our re-

sulting technique “Scene-SIRFS”, as it extends SIRFS from

objects to scenes.

3. Scene-SIRFS
The problem formulation of Scene-SIRFS is:

minimize
R,Z,ψ,L,ω

g(R) +

|Z|∑
n=1

f ′(Zn, Un) + h′

⎛
⎝ |L|∑

m=1

V mLm

⎞
⎠

subject to I = R+ S′(Z,U ,L,V )

Un =
exp(Bψn)∑
n′ exp(Bψn′)

, ∀n

V m =
exp(Bωm)∑
m′ exp(Bωm′)

, ∀m (2)

Where Z = {Zn}, U = {Un}, L = {Lm}, and V =
{V m}. This is similar to Equation 1, except that we have

sets of shapes and lights instead of a single shape and light,

and we have introducedU and V , two sets of “images” that

define distributions over shapes and lights, respectively. We

can think of U as a “visibility” map or a soft relaxation of

a 2.5D shape representation: if Un
i,j = 1, then Zn

i,j is visi-

ble at pixel (i, j). Similarly, V is the “ownership” of each

illumination in L, such that if V m
i,j = 1 then pixel (i, j)

is entirely illuminated by Lm. Our prior on shape is now a

sum of priors over individual depth maps, where each Zn in

Z is regularized independently (see Section 5). In contrast,

our prior on illumination is over the expected illumination

of the entire scene, the per-pixel weighted combination of

each illumination (see Section 6). Our shape and light mix-

ture probabilities U and V are “images” (where each im-

age corresponds to one mixture component) parametrized

by the matrices ψ and ω, respectively, where each column

(ψn or ωm) is a 17-dimensional vector parametrizing the

“ownership” of that shape or light mixture in the scene. The

probabilities U and V are the product of each weight ma-

trix withB (the eigenvectors of the normalized Laplacian of

the RGB image, explained in later) passed through a soft-

max function1. We use 8 shapes and illuminations in our

mixtures for all experiments (|L| = |Z| = 8) though this is

arbitrary. See Figure 1 for a visualization of these mixtures.

For the purpose of optimization, we need to define the

normal field of this mixture of shapes N ′(Z,U). We can-

not use the surface normals of the expected depth map

N(
∑
ZnUn) as this cannot model depth-discontinuities.

We also cannot use the expected surface normals of the mix-

ture of shapes
∑
UnN(Zn) as this normal field may have

vectors of non-unit length. We will therefore linearize each

Zn into a set of partial derivatives in x and y, take the ex-

pectation of those with respect to U , and then construct a

normal field from those expected partial derivatives. This

gives us a proper normal field where each Zn’s influence at

pixel (i, j) is proportional to Un
i,j . Formally:

N ′ (Z,U) =

{
Dx

Dm
,
Dy

Dm
,

1

Dm

}

Dx =

|Z|∑
n=1

Un(Zn ∗ hx), Dy =

|Z|∑
n=1

Un(Zn ∗ hy)

Dm =
√
1 + (Dx)2 + (Dy)2

hx =
1

8

[
1 0 – 1
2 0 – 2
1 0 – 1

]
, hy =

1

8

[
1 2 1
0 0 0

– 1 – 2 – 1

]
(3)

Let S′(·) be our rendering engine for our mixtures, which

computes the normal field of the mixture of shapes and ren-

ders it such that the spherical harmonic illumination at pixel

(i, j) is a linear combination of all Lm, weighted by V m
i,j :

S′(Z,U ,L,V ) = S

⎛
⎝N ′ (Z,U) ,

|L|∑
m=1

V mLm

⎞
⎠ (4)

Where S(·) is the rendering engine in standard SIRFS [3].

Though the spatially varying illumination parametrized

by {L,V } is capable of explaining away shadows, specu-

larities, and interreflections, no attempt has been made to

ensure that the illumination is globally consistent. Though

this may seem unsettling, the human visual system has sim-

ilar properties: people tend not to notice inconsistent shad-

ows or impossible illumination [24].

1in a slight abuse of notation, U and V are simultaneously treated as

sets of images and as matrices whose columns are vectorized images.
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(a) Input Image (b) Multiscale Pb (c) Eigenvector basis (d) A random mixture (e) Another random mixture

Figure 2. A visualization of the embedding used in our shape and light mixtures. In 2(a), we have an input image. In 2(b) we have the

output of multiscale Pb on the input image, and in 2(c) we have the 16 smallest eigenvectors (ignoring the eigenvector that is all 1’s) of

mPb using the intervening contour cue [1]. Each shape’s and light’s “ownership” of the image is parametrized by a 17-dimensional vector,

which is projected onto the eigenvector basis and passed through a softmax function to yield the probability of each pixel belonging to

each mixture component. 2(d) and 2(e) are visualizations of two random mixtures with 8 components (such as U or V ) where the weight

vectors (ψ or ω) are generated randomly (sampled from a Gaussian).

4. Mixture Embedding

Using a mixture of shapes and illuminations is necessary

to model depth discontinuities and spatially varying illumi-

nation, both of which tend to produce variation in the image

in the form of contours, intensity variation, texture gradi-

ents, etc. It therefore follows that we should embed the

shape and light mixtures in some space where the “own-

ership” of each mixture adheres to the segmentation of the

scene. This simplifies inference, as we restrict our attention

to only mixtures of the shapes and lights that are supported

by evidence in the image. This is similar to the motiva-

tion for the use of superpixels as a substrate for inference in

CRF-type models, though our experience suggests that su-

perpixels are a poor embedding for this task, as they are too

“hard”. We will instead embed each mixture component in

a more “soft” embedding: the eigenvectors of the normal-

ized Laplacian of a graph corresponding to the input RGB

image [27]. We construct our embedding as follows: given

an image, first we compute the multiscale Pb of that image

[1, 22]. We then form an affinity matrix from mPb using

the intervening contour cue [20], and compute the 17 eigen-

vectors {ui} corresponding to the smallest eigenvalues (the

first eigenvector is all 1’s). For eigenvectors 2 through 17,

we subtract the mean from each ui and divide each by its

standard deviation, and then concatenate these normalized

eigenvectors into a matrix B, with one column per-pixel.

B is our embedding space, in that each mixture component

is defined by a 17-dimensional vector, whose inner prod-

uct with B defines how dominant that mixture component

is at every pixel in the input image. A similar embedding

is used in [23], for the purpose of combining recognition

and segmentation. See Figure 2 for a visualization of this

embedding.

It may seem unusual that we construct our embedding

using only RGB information, instead of using the complete

RGB-D image. We do this because the depth images are

often mis-aligned and noisy enough that it is challenging to

construct a single accurate contour signal from both sources

of information. Using only the image to create an embed-

ding circumvents the noise in the depth map and forces the

reconstructed shape to be aligned with the image.

Our prior on reflectance g(·) is exactly the same as in [3].

In Sections 5 and 6 we will define f ′(·) and h′(·), our priors

on our shape and illumination mixtures, respectively.

5. Shape Priors and Kinect Images
Our prior on shape is a modification of that of [3]. We

use a linear combination of the smoothness and flatness

terms fκ(Z) and ff (Z) introduced in [4] and refined in [3],

without the occluding contour prior (as we no longer know

the occluding contours of objects in the scene) with an addi-

tional term fẐ(Z,U) that incorporates knowledge from the

raw sensor depth map produced by the Kinect Ẑ:

f ′(Z,U) = λκfκ(Z) + λfff (Z) + λẐfẐ(Z,U) (5)

Where fκ(Z) minimizes the local variation of mean curva-

ture of Z, encouraging Z to be smooth, and ff (Z) mini-

mizes the slant of Z, encouraging Z to be fronto-parallel.

We introduce fẐ(Z,U), which encourages Z to be similar

to the raw sensor depth map if Z is thought to be “visible”

according to U . Crucially, we apply this prior to each indi-

vidual depth map in our mixture rather than to some average

depth map. This encourages the scene’s constituent depth

maps to be smooth while allowing the expected depth map

implied by the mixture to vary abruptly, thereby allowing us

to model depth discontinuities and occlusion.

We use version 2 of the NYU Depth Dataset [28], which

consists of RGB images and aligned Kinect depth maps.

Because Kinect depth maps often have gaps, the dataset

also provides inpainted depth maps. We will use the raw

depth maps rather than the inpainted ones, as our algorithm

will implicitly denoise and inpaint depth during inference.

In addition to gaps, Kinect depth maps have different kinds

of noise. First: the depth and RGB images are often not

well-aligned — not enough to matter for most recognition

tasks, but enough to affect photometric or reconstruction
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tasks. Second: the disparity recovered by the Kinect is of-

ten noisy, presumably due to sensor noise or errors in the

Kinect’s stereo algorithm. Third: the disparity is quantized,

which leads to step-like artifacts in depth.

We must construct a loss function to encourage our re-

covered depth Z to resemble the raw sensor depth Ẑ. First,

let us approximate the upper bound of the error introduced

by quantizing the disparity corresponding to Ẑ:

Zerr
i,j = (1.4233× 10−5)Ẑ2

i,j + 2 (6)

where Ẑ and Zerr are in centimeters. The first term is de-

rived from the baseline of the Kinect, and the second term

is additional ad-hoc slack. We assume that if the difference

between Zi,j and Ẑi,j at pixel (i, j) is less than Zerr
i,j , then

that difference is due to quantization and therefore should

be ignored. Errors greater than Zerr
i,j will be robustly penal-

ized, as they probably are due to sensor noise or alignment

errors. Our loss function is:

fẐ(Z,U) =
∑
i,j

Ui,j max
(
0,
∣∣∣Zi,j − Ẑi,j

∣∣∣− Zerr
i,j

)αẐ

(7)

Minimizing this is equivalent to assuming noise is uni-

formly distributed over a region of size 2Zerr
i and is hyper-

Laplacian outside of that range. The loss is proportional to

Ui,j , which means that Zi,j need only resemble Ẑi,j if our

model believes that this depth map is in the foreground at

pixel (i, j). αẐ controls the shape of the tail of the distri-

bution, and is tuned with cross-validation on the training set

(along with λκ, λf , and λẐ), which sets αẐ = 0.7.

6. Illumination Priors
Our prior on illumination is a simple extension of the il-

lumination prior of [3] to a mixture model, in which we reg-

ularize the expectation of a set of illuminations instead of a

single illumination. Given L (our set of spherical harmonic

illuminations) and V (our set of “images” that define a per-

pixel distribution over our illuminations), we can compute

the expectation of this model at each pixel of the image:

L̄i,j =

|L|∑
m=1

V m
i,jL

m (8)

Where L̄i,j is a 27-dimensional vector describing the effec-

tive illumination at pixel (i, j) in the image. Our prior on

illumination is the negative log-likelihood of a multivariate

normal distribution, applied to each 27-dimensional “pixel”

in L̄:

h′(L̄) = λL
∑
i,j

(L̄i,j − μL)
TΣ−1

L (L̄i,j − μL) (9)

Where μL and ΣL are the parameters of the Gaussian we

learn on the training set, and λL is the multiplier on this

prior (learned through cross-validation on the training set).

(a) Kinect Depth Map (b) Mixture of Gaussians (c) Plane-Fit Depth Map

Figure 3. We initialize the depth maps in our shape mixture by fit-

ting a mixture of Gaussians to the (x, y, z) coordinates of depth-

map pixels, and then fitting a plane to each Gaussian. 3(a) shows

the raw depth map, 3(b) shows the posterior probability of each

pixel under each mixture component, and 3(c) shows the fitted

planes composed into one depth map according to hard assign-

ments under the mixture of Gaussians.

7. Initialization & Optimization

Optimization of our model is similar to that of [3]. We

absorb the I = R + S(·) constraint in Equation 2 by

rewriting g(R) as g(I − S(·)), thereby eliminating R as

a free parameter. In optimization we internally represent

each depth map Zn as a pyramid, and whiten each illu-

mination Lm according to {μL,ΣL}. We vectorize those

our pyramid-depths, whitened illuminations, and mixture

weights {ψ,ω} into one state vector, and then minimize

the loss in Equation 2 using L-BFGS.

This optimization problem is non-convex, and so it is

sensitive to initialization. Because the scenes in the NYU

dataset are mostly composed of planar surfaces, we will ini-

tialize each depth mapZi inZ to a plane such that the scene

is well-described by the set of planes. To do this, we fit

a mixture of Gaussians to the (x, y, z) coordinates of each

pixel in Ẑ (in image coordinates) using EM with 50 random

restarts. Once EM converges we have n multivariate Gaus-

sians, each parametrized by a mean μ and a covariance ma-

trix Σ. If a Gaussian does indeed describe a roughly-planar

surface, then Σ will be elongated in two directions, and nar-

row in the third. This means that the Gaussian is well de-

scribed by the plane satisfying vT([x, y, z]−μ) = 0, where

v is the eigenvector corresponding to the smallest eigen-

value of Σ. We initialize each surface in our mixture to its

corresponding plane in our mixture of Gaussians, by solv-

ing for z at every pixel. See Figure 3 for a visualization.

This plane-fitting sometimes produces poor results on

our synthetic dataset, because our synthetic scenes contain

mostly fronto-parallel objects stacked on top of each other.

Therefore, in our synthetic experiments we initialize the

depth maps by doing K-means (with 50 random restarts)

on just the z values in the scene, and then initializing each

depth map to be a centroid, thereby constraining the initial

depth-planes to be fronto-parallel.
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RGB image I

raw depth Ẑ

(a) Input
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our normal N̄

true normal N∗
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true reflect. R∗

our shading S
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(b) Scene-SIRFS / Ground-Truth

reflectance
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(c) Retinex [12, 15]

reflectance

shading

(d) Gehler et al. [11]

Figure 4. A test-set scene from our pseudo-synthetic scene dataset. In 4(a) we have the input to our model: an RGB image and a noisy

Kinect-like depth map. In 4(b) we have the depth map, surface normals, reflectance, shading, and spatially-varying illumination that our

model produces, and the corresponding ground-truth scene properties on the bottom. In 4(c) and 4(d) we show the shading and reflectance

images produced by the best-performing intrinsic image algorithms. See the supplementary material for additional similar figures.

8. Experiment - Pseudo-synthetic Data

The primary goal of this paper is to produce a model

that works well on actual Kinect images. However, it is ex-

tremely difficult to produce ground-truth shape, reflectance,

shading, and illumination models for real-world natural

Algorithm Z-MAE N -MAE s-MSE r-MSE rs-MSE L -MSE Avg.

(1) Color Retinex [12, 15] - - 0.0230 0.0364 0.0354 - -

(2) Tappen et al. 2005 [29] - - 0.0281 0.0337 0.0387 - -

(3) Gehler et al. 2011 [11] - - 0.0181 0.0224 0.0216 - -

(4) Kinect Only 5.09 0.5799 - - - - -

(5) SIRFS [3] 114.82 0.6841 0.0181 0.0202 0.0289 0.0241 0.1647
(6) SIRFS + Segmentation 57.43 0.7600 0.0176 0.0200 0.0296 0.0210 0.1458
(A) Scene-SIRFS (Complete) 10.91 0.2618 0.0101 0.0184 0.0227 0.0166 0.0764
(B) Scene-SIRFS (λẐ = 0) 122.67 0.6454 0.0134 0.0203 0.0256 0.0199 0.1491
(C) Scene-SIRFS (No Initialization) 11.06 0.3000 0.0113 0.0233 0.0263 0.0176 0.0860
(D) Scene-SIRFS (|Z| = 1) 22.72 0.5123 0.0179 0.0284 0.0348 0.0237 0.1302
(E) Scene-SIRFS (|L| = 1) 11.64 0.2754 0.0163 0.0313 0.0269 0.0211 0.0988
(F) Scene-SIRFS (|Z| = |L| = 1) 24.59 0.5285 0.0292 0.0587 0.0523 0.0213 0.1708
(G) Scene-SIRFS (Z only) 9.82 0.2877 - - - - -

(H) Scene-SIRFS (Z only, |Z| = 1) 24.69 0.5552 - - - - -

Table 1. Our results on the test set of our pseudo-synthetic dataset.

Shown are the geometric means of six error metrics (detailed in the

supplementary material) across the test set, and an “average” error

(the geometric mean of the other error metrics). Z-MAE measures

shape errors, N -MAE measures surface-normal errors, s-MSE,

r-MSE, and rs-MSE measure shading and reflectance errors, and

L -MSE measures illumination errors. If an algorithm does not

produce a certain scene property, its error is left blank. (1)-(3) are

intrinsic image algorithms, which produce shading and reflectance

images from an RGB image, where (3) is the current state-of-the-

art. (4) evaluates the error of the noisy Kinect-like depth maps we

use as input. (5) is the SIRFS model that we build upon, and is

equivalent to our model without any mixture models or a Kinect

depth map. (6) is SIRFS run in isolation on the segments produced

by normalized cuts. In addition to our complete model (A), we

present several ablations. (B) has no Kinect information, (C) has

no initialization, and (D)-(F) omit one or both of the shape or light

mixtures. (G) is a shape-denoising algorithms in which we omit

the RGB image and just optimize over shape with respect to our

prior on shapes, and (H) is (G) with a single depth map, instead of

a mixture model.

scenes. Thankfully, using the MIT Intrinsic Images dataset

[12] extended with the ground-truth depth maps produced

by Berkeley [4] we can compose pseudo-synthetic scenes

that emulate natural scenes. In the supplementary mate-

rial, we explain how we compose these objects into heav-

ily cluttered scenes, which display occlusion and spatially-

varying illumination. We also generate noisy Kinect-like

depth maps from ground-truth depth maps for use as input

to our model. Examples of this data can be seen in Figure 4,

and in the supplementary material. We present this dataset

not because we believe it to be a perfect surrogate for re-

ality, but because it is the closest approximation to reality

for which we have exhaustive ground-truth, allowing us to

train our model and tune hyperparameters (on the training

set) and compare our model to others (on the test set).

Table 1 compares our model’s performance to other in-

trinsic images techniques and to ablations of our model.

The shading and reflectance images produced by our model

beat or match the best intrinsic image algorithms. The sur-

face normals produced by our model have half of the error

of the input, though for absolute depth error we do not im-

prove. This is consistent with the limits of shading, as shad-

ing directly informs the surface normal, but only implicitly

informs absolute depth. Our performance is similar to that

of SIRFS in terms of reflectance, but much better in all other

respects. A naive extension of SIRFS to scenes (in which

we use normalized cuts to segment each image into 16 seg-

ments and run SIRFS on each segment in isolation) per-

forms similarly to basic SIRFS. The source of our advantage

over SIRFS is shown through our ablations — removing ei-

ther the shape or the illumination mixture components hurts

performance on every error metric, and removing the Kinect

depth map hurts performance on the depth and normal error

metrics, though not the shading or reflectance metrics. The

degenerate case of our model which only denoises the depth

map and ignores the RGB image performs surprisingly well
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in terms of error relative to the ground-truth shape and nor-

mal field. However, we believe this mostly reflects a bias in

our error metrics towards overly smooth shapes, which the

shape-denoising ablation produces (see Figure 7).

9. Experiment - Kinect Data

To qualitatively evaluate our model, we sampled several

images from version 2 of the NYU Depth Dataset [28], and

ran them through our model (all using the same hyperpa-

rameter setting as in our pseudo-synthetic experiment). The

output of our model can be seen in Figure 1 and in the sup-

plementary material. We compare against two intrinsic im-

age algorithms: Retinex [12, 15] and Gehler et al. [11].

Our shading and reflectance images generally look much

better than those produced by the intrinsic image algo-

rithms, and our recovered depth and surface normals look

much better than the input Kinect image. Our spatially

varying illumination captures shadowing and interreflec-

tions, and looks reasonable. The primary cause of errors in

our model appears to be over-smoothing of the depth map,

which we believe is because the error metrics with which we

cross-validate our model tend to favor conservative param-

eter settings, and because MAP estimation for tasks such as

ours tends to produce overly conservative output [21].

One way to evaluate the accuracy of our model is to use

it in graphics applications. In Figures 5 and 6 we use our

output to re-render the input image under different camera

viewpoints and under different illumination conditions. Our

renderings look significantly better than renderings pro-

duced with the inpainted Kinect depth map provided by the

NYU dataset. Changing the viewpoint with the raw Kinect

depths creates jagged artifacts at the edges of shapes, while

our depth (which is both denoised and better-aligned to the

image) looks smooth and natural at object boundaries. Re-

lighting the raw Kinect depth produces terrible artifacts, as

the surface normals of the raw depth are very inaccurate

due to noise and quantization, while relighting our output

looks reasonable, as the surface normals are cleaner and re-

flectance has been separated from shading. In Figure 7 we

see that the depth maps our model produces are less noisy

than the NYU depth maps, and more detailed than the out-

put of the shape-denoising ablation of our model, demon-

strating the importance of the complete model.

10. Conclusion

We have presented Scene-SIRFS, a variant of SIRFS that

takes as input images of natural scenes rather than images

of segmented objects. We have done this by generalizing

SIRFS into a mixture model of shapes and illuminations,

and by embedding those mixtures into a soft segmentation

of an image. We additionally use the noisy depth maps in

RGB-D data to improve low-frequency shape estimation.

The output of our model can be used for graphics appli-

cations such relighting or re-orienting the camera, and it is

easy to imagine other applications such as inserting objects,

modifying reflectances, or white balancing. Our model im-

proves the initial depth map by removing noise, adding fine-

scale shape detail, and aligning the depth to the RGB image,

all of which presumably would be useful in any application

involving RGB-D images. Perhaps most importantly, our

model takes an important step towards solving one of the

grand challenges in vision — inferring all intrinsic scene

properties from a single image.
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