
 

 

Abstract 
 

One of the main challenges in Computed Tomography 
(CT) is how to balance between the amount of radiation 
the patient is exposed to during scan time and the quality 
of the CT image. We propose a mathematical model for 
adaptive CT acquisition whose goal is to reduce dosage 
levels while maintaining high image quality at the same 
time. The adaptive algorithm iterates between selective 
limited acquisition and improved reconstruction, with the 
goal of applying only the dose level required for sufficient 
image quality. The theoretical foundation of the algorithm 
is nonlinear Ridgelet approximation and a discrete form 
of Ridgelet analysis is used to compute the selective 
acquisition steps that best capture the image edges. We 
show experimental results where for the same number of 
line projections, the adaptive model produces higher 
image quality, when compared with standard limited 
angle, non-adaptive acquisition algorithms. 
 

1. Introduction 
In the last decade, several studies have shown that 

radiation exposure during CT scanning is a significant 
factor in raising the total public risk of cancer deaths 
[1,20,21]. To balance between image quality and these 
concerns, radiologists use the protocol: As Low as 
Reasonably Achievable (ALARA). It’s meant to ensure 
that “…CT dose factors are kept to a point where risk is 
minimized for maximum diagnostic benefit...", where the 
dose can be determined by the product of the CT tube 
current and the time the patient is exposed to radiation (see 
[2] for an overview). Currently, there are several state-of-
the-art technologies that attempt to achieve dose reduction. 
Iterative Reconstruction (IR) methods are successful in 
reducing artifacts, improving resolution and lowering the 
noise in the reconstructed images [3,4]. More recently, 
Model Based Iterative Reconstruction (MBIR) [6] was 
introduced. It improves upon the IR methods by 
incorporating accurate system models coupled with 
statistical noise models and prior models. However, 

dosage levels during CT exams are still at the focus of 
attention and any new method that can reduce them is 
considered highly valuable. 

 This paper describes an adaptive acquisition model that 
is superior, in the CT image quality, to existing limited 
angle, non-adaptive acquisition methods and in theory may 
allow minimal and optimal dosage levels. The method can 
be considered a significant generalization of existing two-
step adaptive acquisition methods [7,8] and can potentially 
use the same hardware configurations that are capable of 
changing their geometric configuration and acquisition 
protocols on-the-fly [9].  

Observe that adaptive acquisition should not be 
confused with adaptive reconstruction. In the latter, the 
acquisition model is a non-adaptive uniform sampling 
scheme, where over a discrete set of pre-determined 
angles, line projections are computed at equal intervals. In 
this setup, the adaptive elements, if exist, are part of the 
post-acquisition reconstruction step.  

The outline of the algorithm is as follows: First, the 
system projects the object with an extreme low dose 
according to a uniform predetermined pattern and 
reconstructs an initial low quality image. Next, the system 
predicts from the reconstructed low quality image where 
the significant edges of the true objects are and projects 
along them. Then, the system iterates by incorporating the 
newly added line projections in order to obtain a refined 
approximation of the object's image. The algorithm 
continues to iterate between estimation of locations of 
significant features, adaptive acquisition and 
reconstruction until a convergence criterion is met. The 
goal is to converge to a high quality reconstruction using a 
minimal number of rays (line projections). The method 
relies on the mathematical model of Ridgelets [5], and 
therefore has a natural multiresolution capability, where 
the significance of edges is analyzed at different scales. 
The mathematical theory of [5] quantifies, in the setup of 
CT, the geometric ‘structure’ of the image and how fast a 
Ridgelet approximation converges to the image. Our 
algorithm, whose goal is to acquire an unknown image, 
regards the adaptive Ridgelet approximation of the image 
as the ‘optimal’ benchmark and is designed to match its 
performance. This approach has strong ties with the 
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waveform analysis presented in [10] that allowed the 
authors to classify singularities and quantify the ‘stability’ 
of limited angle tomography. Indeed, although in our work 
we limit the number of line projections, but do not limit 
the angles, the fundamental understanding of the 
relationship between a function’s edge singularities and its 
Radon representation, as explained in [10], is at the core of 
our algorithm (see Figure 3.1 and the accompanying 
explanation). We show in the experimental results section 
that for the same number of line projections, our algorithm 
yields higher image reconstruction quality, when compared 
with known limited angle, non-adaptive acquisition 
algorithms. 

The paper is organized as follows: Section 2 overviews 
necessary mathematical background. Section 3 describes 
in detail our adaptive acquisition algorithm. Experimental 
results and comparisons with non-adaptive methods are 
given in Section 4. In Section 5 we draw conclusions and 
discuss future work. 

 

2. Preliminaries 
 

2.1 Fast algorithms for Total Variation 
functionals with 'sparse' constraints 

 

For a given image ,m mI ���  with pixels values � �,i jI , we 

define the gradient of I  by
 , , 1, , , 1( , )i j i j i j i j i jI I I I I� �� � � � . 

The Total Variation (TV) norm of the image is given by 

	 
, 1, , , 1
, 2

.
m

i j i j i j i jTV
i j

I I I I I� �
�

� � ���  Denote 2N m�  and 

let Nx��  be a one-dimensional representation of I  by 
concatenating the columns of I  into a single column 

vector
 1,1 2,1 ,1 1, ,( , , , , , ,... )T

m m m mx I I I I I� � � . Given an 

n N� ( n N ) sampling matrix n NA ���  and 

corresponding observations vector ny ��  , generated by 

Ax y� , the so-called TV-minimization is concerned with 

solving one of the following optimization problems: 

                   
min . .

TVU
U s t Au y�

      
    (2.1) 

        
2

2
min

TVU
U Au y�� �         (2.2) 

where Nu��  is the one-dimensional representation of 
m mU ��� and �  is a given weight parameter. The 

minimization problem (2.2) is applied in the presence of 
noise in the sampling process and the weight �  depends, 

in part, on the expected noise level. This model is difficult 
to solve directly due to non-differentiability and non-
linearity of the TV term. During the last few years there 
has been an explosion of new numeric iterative solvers 

(see the papers in the “Compressive Sensing Recovery 
Algorithms” section of [11]).  

Although conceptually our method may use such solvers 
as black boxes, its unique features allow us to apply 
critical modifications that not only accelerate the iterative 
methods, but also make them feasible in large datasets 
problems when N  is large. In this work, we implemented 
a modified version of the TVAL3 solver [12,13]. Our 
modified version utilizes the fact that in our special case 
the matrix A  is highly sparse. This is in complete contrast 
to the usual setup in compressed sensing, where the theory 
dictates a dense matrix (usually of pseudo-random nature). 
As we shall see in Section 3, in our case, the sparsity is 
due to the fact that each row of A  is associated with 
weighted integration over a digital line in the image I  and 
therefore a vector of weights. Each weight value 
corresponds to a pixel in I  and determined by the amount 
of intersection between the analytic line and the pixel 
itself. As a result, only weights that are located in entries 
associated with the pixels of the digital line have non-zero 
values. Thus, each row in matrix A  has 

cm� c N� (where 2c  ) non-zero entries. We note that 
even if we use a more accurate model based interpolation, 
where the line is given more significant width, the matrix 
A  would remain sparse. This structure allows us to reduce 

memory consumption, to adaptively update a sparse data 
structure for A  and to implement fast linear algebra 
operations. This idea is not new to the CT community. 
Moreover, for practical clinical data sizes in 3D helical 
uniform acquisition, the matrix A  can be too large to hold 
in memory and must be computed on the fly. Also, its form 
is carefully determined from the geometry of the focal 
spots and detectors [14]. In this work we focus on the 2D 
model and in future work we plan to investigate whether in 
the 3D case our smaller adaptive sampling set can be 
stored in memory or computed on-the-fly. 
 
2.2 Ridgelets 

 
Let 	 
2L� � �  be a wavelet [15]. A bivariate Ridgelet 

function [16] is defined by 
1/2

, , 1 2 1 2( , ) (( cos sin ) / )a b x x a x x b a�� � � �� � �� , 

where ,a b  and �  are the parameters determining the 
scale, translation and rotation of the Ridgelet function, 
respectively. 

Given 	 
2
1f L� � , its Continuous Ridgelet Transform 

[16] (CRT) is defined by 

2 , ,( , , ) ( ) ( )f a bCRT a b x f x dx�� ���� .          (2.3) 

The continuous Radon transform [17] of a bivariate 
function f  at direction �  is defined as
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2 1 2 1 2 1 2( , ) ( , ) cos sin ,fR t f x x x x t dx dx� � � �� ����  

where �  is the Dirac function. The Radon and the 
Ridgelet transforms are related by 

	 
,( , , ) ( ) ,f a b fCRT a b t R t dt� � �� �� ,         (2.4) 

where 1/ 2
, ( ) (( ) / )a b x a x b a� �� �� . In applications, this 

means that the Ridgelet transform can be computed by the 
application of the Radon transform at a given angle, 
followed by 1D fast wavelet transform [15]. 

We find that Ridgelets are the right mathematical tool in 
the setup of CT, because the acquisition device is not able 
to capture, through its sampling process, well localized 
functionals such as Curvelet coefficients. Observe that in 
the context of CT reconstruction, Curvelets have been used 
as a regularization tool [23]. 
 From approximation theoretical perspective, the 
mathematical foundation of our adaptive algorithm follows 
the framework of characterizing the images by the 
appropriate function smoothness spaces and then 
providing an estimate for the order of convergence. 
Definition 2.1 [5]: For 0� � , and , 0p q � , we say that 

	 
2
,p qf R�� � � , if  	 
2

1f L� �  and 

	 
 	 

,

1/
1/ 2

0

1
2 2 , , .

p q

qq p
pj q j

fR p
j

f CRT d�

�� � �
�

�
�

���

� �� ��  �� �� �� �� �� �
� �� �

We note that this definition requires certain conditions on 
the wavelet � , such as sufficient vanishing moments (with 

respect to � ) and its decay, which we shall omit here. 
These conditions ensure that membership in the 

smoothness space ,p qR��  does not depend on the particular 

wavelet used in (2.3).  In this work we assume that the 
functions we analyze are compactly supported in a 

‘standard’ compact domain such as �  2
1,1�  and attain the 

value zero on its boundary. Indeed, CT images satisfy this 
requirement (see the examples below). Therefore, by a 
simple zero extension argument, a function 

�  	 
2

2 1,1f L� �  of this nature can also be regarded as a 

function in 	 
 	 
2 2
1 2L L� � � . By sampling the CRT, one 

may obtain a discrete Ridgelet Frame system � �!�  with a 

dual system � �!�� , for a countable index 	 
� �, ,a b! �� , 

such that for
 

�  	 
2

2 1,1 ,f L� � , ,f f f! ! ! !
! !

� � � �� �� �� � . 

Recall, that the frame property guarantees ‘stability’ of the 
representation, in the sense that there exist constants 
0 A B �  � , such that 

22 2

2 2
,A f f B f!

!

�� �� , �  	 
2

2 1,1f L" � � . 

Let us rearrange the Ridgelet coefficients based on the size 

of their absolute values 
1 2

, ,f f! !� �# #�, 

and denote the n-term adaptive approximation to f  by 

1

,
i i

n

n
i

f f ! !� �
�
� �� . Then, we have the Jackson-type 

estimate [5] for 1 / 2� �  and 1 / 1 / 2$ �� � , 

�  	 
2
2 ,

/ 2

1,1n L R
f f cn f �

$ $

��
�

� � � . Thus, under certain 

assumptions on the input function, not only the 
convergence of the adaptive approximation is ensured, but 
its rate is also estimated. The outcome the theory is that the 
approximation rate of an adaptive Ridgelet approximation 
depends on the smoothness of the function in a given 
Ridgelet smoothness space.  

As we shall see in Section  3, our adaptive acquisition 
method follows the adaptive Ridgelet approximation to the 
image I  as a model. It tries to predict from iterative 
approximation to I , the significant Ridgelet coefficients. 
Then we use these coefficients in order to select the next 
set of line projections that are considered as best 
candidates to  project I  with, in the subsequent iteration. 
 

3. Adaptive Tomography Acquisition (ATA) 
 

Before presenting the details of the ATA algorithm, we 
first provide an instructive and useful example: Assume we 
had an access to an optimal ‘oracle’. We then ask, how 
many line projections are needed as rows in the matrix A , 
such that the image of  Figure 3.1(a) can be reconstructed 
with high precision, by solving (2.1) ? 
 
 

 
 
 
 
 
 

(a) Original image    (b) Sampled 8 line    (c) Reconstruction, 
                                Projections              perfect (PSNR= � )        

 
Figure 3.1: Reconstruction of ‘Square’ image of size 256x256 

 
The surprising result is that, equipped with an ‘oracle’, 

this image can be reconstructed with perfect precision, 
where the matrix A  in (2.1) contains only 8 rows 
associated with 8 line projections. Thus, the numbers of 
samples satisfies 0.000122n N� , which is a tiny fraction 
of the size of the image, 256 256N � � . This is achieved 
by selecting the unique four pairs of line projections that 
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are the immediate neighbors of each of the four lines 
associated with the edges of the white square. Figs 3.1(b) 
and (c) show the locations of the line projections and the 
reconstructed image, respectively. 

The moral of this example, which correlates well with 
the theory in [5], is that during the acquisition process, we 
should try to adaptively sample the line projections that are 
aligned and centered around the edges of the image. 
Obviously, the image I  is unknown and we do not have 
access to an ‘oracle’. As we shall see, this is exactly where 
the multiresolution nature of the Ridgelet model is useful. 

Figure 3.2 show a flow chart of the Adaptive 
Tomography Acquisition (ATA) algorithm: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2: Flow chart of the main steps in the ATA algorithm. 
 

Next, a detailed description of the main steps of the 
ATA algorithm is given:  
1. Initialization: We create an initial sampling matrix A  
using a relatively small uniform set of line projections and 
sample the image I  to obtain an initial observations 
vector y . The number of the initial line projections is 

determined relative to the image size.  For example, for an 
image of size 256 256� , we measured 8 equally spaced 
line integrals at eight uniformly spaced angles, which 
generates a total of 64 initial measurements that are about 
0.1% of the image size. Figure 3.4(a) illustrates this non-
adaptive uniform sampling pattern for an image of  size 
256 256� . We also initialize the current iteration counter 

k  to 0 and the initial approximation to I , 	 
1U �  to 0. 
2. TV Minimization: The inputs to this step are: an  
updated sampling matrix A  (with new additional rows that 
correspond to the newly acquired line projections) , an 
observations vector y and the previous approximation 

	 
1kU � as the initial guess. Then, we apply TV minimization 
step (2.1) or (2.2) (depend on expected noise levels) to 

compute 	 
kU . Recall, that in our setup, the sparse nature 
of A  enables to  process large-scale images. 

We have an option to select a tradeoff between 

reconstruction quality and performance. We do not 
necessarily need to completely solve the TV minimization 
problem by iterating the TV solver until it converges as in 
[12]. Instead, we apply only a fixed and limited number of 
iterations of the TV solver, or terminate the iterations 
using a less demanding stopping criterion and proceed to 
the next step. This speeds up this step in the algorithm, but 
in some cases, its effect on the next analysis step implies 
that more line projections are needed to be acquired in 
order to achieve the same reconstruction quality.  

In any case, our adaptive acquisition process terminates 

if one of the following conditions: 	 
 	 
1

2

k kU U %�� �  or 

number of rows in A L# , holds, where %  is a 
predetermined threshold and L  is a limit on the total 
number of line projections that is permitted to be acquired. 
3. Ridgelet Analysis: The inputs to this step is an 

improved approximation 	 
kU  to I . We compute a subset 

of 	 
kU Ridgelet coefficients by the application of Radon 
transform followed by the application of wavelet 
transform, as shown in (2.4). Since in our application we 
only use Ridgelets for analysis, we do not need to use the 
inverse Ridgelet transform as in [16] and that simplifies 
the implementation. In practice, we realize that if we 
choose the number of angles to be a quarter of the image 
length, then our sampling scheme is sufficiently dense for 
high quality reconstruction, but not too much as to lead to 
subsequent unnecessary acquisition. Thus, for an images of 
size 256 256� , we compute the Ridgelet coefficients for 
only 64 uniformly spaced angles, 

{0, / 64,...,63 / 64}� � �� , with 256 line projections per 

angle. For our experimental results, we applied the 
univariate discrete Haar wavelet [15] transform at each of 
the 64 angles to the 256 computed line projections. Then 
we subsampled the coefficients to avoid unnecessary 
subsequent acquisition. Specifically, we compute the 

Ridgelet coefficients 	 
 	 

, , , ,( ) ,k k

a b a bx U� �� �� using the 

Haar wavelet function , ( )a b x� , in 4 different resolutions, 

where 2 , 0,...,ja j J�� �  and {0,1, 2,3}J� �  depends on 

the angle � . In this case, the  discrete sampling of  
Ridgelet coefficients is controlled by the pairs 
( , ) { ( 8 / 6 4 , 3 ) , ( ( 8 1 ) / 6 4 , 0 ) ,

( ( 8 2 ) / 6 4 , 1 ) , ( ( 8 3 ) / 6 4 , 0 ) ,

( ( 8 4 ) / 6 4 , 2 ) , ( ( 8 5 ) / 6 4 , 0 ) ,

( ( 8 6 ) / 6 4 , 1 ) , ( ( 8 7 ) / 6 4 , 0 ) }

J l l

l l

l l

l l

�� � �
� �
� �
� �

� �
� �
� �
� �

  

where, 0 8l�  . 
4. Adaptive Sampling of New Line Projections: The 

analysis of the Ridgelet coefficients 	 

, ,
k

a b �� , computed at 

step 3, enables us to decide who are the new line 
projections that are added to A  as new rows. Specifically, 
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we choose these line projections to be associated with the 
M largest Ridgelet coefficients that have not yet been 
marked as sampled by the algorithm. The goal of the 
selected line projections is to approximate (2.3) where �  

is the Haar wavelet. In our experiments, we 
select 0.1M n� , where n  is the image row size. In Figure 
3.3, we see an illustration of the support of the Haar 
Ridgelet function (dashed lines) and the associated two 
line projections (inner lines) within its support. Then, we 
sample the image I by the updated matrix A  to obtain an 
updated observations vector y . 

Now, we look closer at the implication of using only 
two line projections to approximate the value of the Haar 

Ridgelet. Assume that the Ridgelet coefficient 	 

, , ( )k

a b x��  

has not been marked as sampled yet but it is significant 

enough to  be sampled at the current iteration. Let 	 
,IR � �  

be the Radon transform of the unknown image I  at a fixed 
angle � . In this case, the two values of the line projections 

that we acquire are 	 
, / 4IR b a� �  and 	 
, 3 / 4IR b a� � . 

These values are considered as the approximation: 

	 
 	 
	 
 	 
1/ 2 , / 4 , 3 / 4 , ,I I Ia R b a R b a CRT a b� � �� � � � & . 

Hence, the ATA algorithm can be summarized as follows: 

ATA ( , , , , )A I M L %  

Input: A - Initial sampling matrix , I - Input image, M -
Number of the Ridgelet coefficients subset considered in 
each iteration. L - Total number of line projections. % - 
Stopping threshold. 
Output: U - Reconstructed image. 
Notations: u - 1D vector representation of U , A(I) – 
Sampled image I using the sampling matrix A. 

1. 	 
1 0.U � ' 0.k ' 2� %'  
2. While � %�  and  number of rows in A L   

     2.1.  ( )y A I'  

     2.2.  Obtain 	 
ku  by solving problem (2.1) or (2.2),  

             using ,A y  and  	 
1kU � as the initial guess . 

     2.3.  Compute the discrete Ridgelet coefficients of    

             
	 
kU . 

     2.4.  Find the M Ridgelet coefficients that have the 
     largest absolute values that have not been  
     sampled yet. 

     2.5.  For each of the newly found Ridgelet coefficients:        
             add new rows to A  associated with line  
             projections, whose sampling approximates the  
             value of the Ridgelet coefficient on the image I . 

     2.6. 	 
 	 
1k ku u� �' � . 1.k k' �  

 3. Return 	 
1 .kU �   
 

 
 
 
 
 
 
 
 
Figure 3.3: Line integrals that were acquired per a significant 
Ridgelet coefficient: The external dashed lines correspond to the 
support of the Ridgelet and the inner lines are the sampled line 
projections 

 
In Figure 3.4, we see the output from 4 iterations of the 

ATA algorithm on the 'Ellipse' image (shown in Fig. 3.4 
(h)). Figs. 3.4 (a) and (b) show the uniform acquisition 
pattern described in the initialization step and the resulted 

first approximation image 	 
0U , respectively. Figs. 3.4 (c), 
(e) and (g) show the newly sampled line projections 
associated with the next M largest unsampled Ridgelet 
coefficients in iterations 0,1 and 2. Figs 3.4 (d), (f) and (h) 

show the resulted approximation images 	 
1kU �  
( 0,1, 2.k � ) produced by solving (2.1) after updating 
A with the new corresponding rows. We see that the 

algorithm quickly identifies the edges of the ellipse and 
only samples around them with more samples along the 
longer axis first. Moreover, initially, when the 

approximation 	 
1kU �  is still blurred (Fig. 3.4 (b)), the 
algorithm finds from the Ridgelet analysis that it should 
first acquire line projections associated with Ridgelet 
coefficients from coarse resolution as seen in Figs. 3.4 (c) 
and (e). Only after the approximation contains sufficiently 
sharp edges (Fig. 3.4 (f)), Ridgelet coefficients from finer 
resolution become significant and the line projections 
associated with them are acquired as seen in Fig. 3.5 (g). 
In summary, the ATA algorithm attempts to acquire only 
line projections that are around and aligned with edge 
singularities that are ordered by resolution. 
 

 

 
 

 
 

 
 
 

 
 

Figure 3.4: Adaptive acquisition of the Ellipse image: Iterations 

of newly added projection lines and approximations 	 
k
U . 
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4. Experimental Results 
 

In this section we compare the ATA algorithm with 
known limited angle (non-adaptive) methods and also 
examine the quality of the estimate for the significant 
Ridgelet coefficients of the image I  produced by our 
algorithm. We show that for a given number of line 
projections measured on the image I , ATA produces a 
significantly better approximation to I . The experiments 
were conducted on 256 256� well known phantom test 
images: 'Shepp Logan' and 'Zubal head' [18] in 2 different 
setups: noisy and noise free. We use the standard Peak 
Signal to Noise Ratio (PSNR), measured in dB, to quantify 
an approximation U  to the image I  where the image 
pixels take values in [0,1], 

	 
 21 1
10 , ,

,

, 10 log ( )i j i j
i j

PSNR I U N I U� �� �
�� �

� �
�� . Given an 

m m�  image, we prescribe a target of n  samples. Denote 
/d n m�  (assuming mod 0n m � ). We compare five 

acquisition and reconstruction methods: 
1. Filtered Back Projection (FBP): For the FBP method 
we sampled 60 m� line projections (regardless of the 
target limit), which are m  equally spaced line integrals 
over the angles 0, 60,...,59 60� � . We then used the 

MATLAB implementation ('iradon') to obtain a 
reconstructed image. 
2. Non Adaptive Equally Spaced (NAS): We used 
equally spaced rotations and a fixed number of line 
projections at each angle such that the total number of line 
projections     matched the prescribed budget. We then 
applied TV     minimization to this sampled data. 
Specifically, / 2m  (equally spaced) line projections were 
acquired over the     angles 
0, / 2 , 2 / 2 ,..., (2 1) / 2d d d d� � �� . 

3. Non Adaptive Uniform Fourier (NAF): This method 
is used in [22]. In this mode, we uniformly select lines in          
the Fourier domain of the image and use Fourier      
coefficients on these lines as the entries of the sampling 
matrix A. Specifically, m Fourier coefficients were     
taken on the lines associated with the angles   
0, / , 2 / ,..., ( 1) / .d d d d� � ��  

4. Adaptive Tomography Acquisition (ATA): Our 
proposed adaptive algorithm (see Section 3).  
5. ATA using an oracle (ATA oracle):  The same 
algorithm used in 4, but now we allow ATA to use the 
Ridgelet analysis of the I  instead  of using the Ridgelet 
analysis performed on the iterated approximated image. 

The first tests are noise free. In these tests we solve the 
problem (2.1). In Figs 4.1, 4.2 we see that the ATA 
algorithm achieves perfect reconstruction using the 
smallest number of line projections, while the uniform 
limited angle, non-adaptive acquisition algorithms (NAS  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 4.1: PSNR comparison between non-adaptive and 
adaptive acquisition methods for the reconstruction of the 
'Shepp-Logan' image. 
 
and NAF, that equipped with the same TV minimization 
solver and FBP) achieve significantly lower image quality. 
Figure 4.3 shows a comparison between PSNR values of 
methods 2-5 for different numbers of line projections for 
the 'Shepp-Logan' image. We see, that despite of not 
having the image I available at the time of acquisition, our 
algorithm manages to perform almost as good as an 
algorithm equipped with an ‘oracle’ that uses the Ridgelet 
analysis of the image I . 

Next, we show results with simulated low dose as in [3]. 
For a selected parameter of incident photon count I! , the 

simulated detected photon counts !� , were chosen as 

Poisson distributed random variables with mean equal to 
p

I e! � , where p  is a noiseless line projection. The 

simulated noisy projection, p� , is then determined by 

	 
log / Ip ! !� � �� . This time, in our iterations, we solve 

the problem (2.2), which provides better regularity for 
noisy data. In Figure 4.4 we see a comparison of ATA and 
NAS using dose simulation for the Shepp-Logan image. 
We see that the image quality produced by ATA is higher 
for a smaller number of line projections. Figure 4.5 shows 
a clear advantage of ATA over the compared methods on 
the 'Zubal Head' image under a dose simulation. In Figure 
4.6, we see a plot of PSNR reconstruction values at 
various simulated dose levels for the Shepp Logan image.  
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Figure 4.2: PSNR comparison between non-adaptive and 
adaptive acquisition methods for the reconstruction of the 
'Zubal-head' image. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 4.3: PSNR comparison between the ATA algorithm, 
ATA with an oracle and the non-adaptive methods of NAS and 
NAF after their applications to the 'Shepp-Logan' image. 
 

We note that currently the running times of the ATA 
algorithm, simulated on Matlab, are about 7-10 slower 
than the non-adaptive methods (NAS, NAF) for the same 
number of line projections. This relates to the choice of 
M , the number of new line projections introduced at each 
iteration. For a given number of line projections L , the 
choice 0.1M L� yields about 10 iterations, where the  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4: PSNR comparison between ATA and NAS for the 
reconstruction of the 'Shepp-Logan' image at simulated incident 
photon count 250000I! � . 

 

 
Figure 4.5: PSNR comparison between ATA and NAS for the 
reconstruction of the 'Zubal-head' image at simulated incident 
photon count 1000000I! �  

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6: PSNR comparison between the ATA algorithm and 
NAS after their application to  the 'Shepp-Logan' image for 
various simulated incident photon counts . 
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matrix A , in the kth iteration ( 1, ,10k � � ),  contains 

about 0.1kL rows. Solving these iterations is about 5.5 
slower than solving the TV-minimization of order n  only 
once. The rest of the running time of ATA is spent on the 
Ridgelet analysis computations that are performed at each 
iteration. 
 

5. Conclusion and Future Work 
 

In this paper we propose a mathematical model for 
adaptive CT acquisition whose theoretical goal is to 
radically reduce dosage levels, while maintaining high 
quality reconstruction. We presented numerical 
simulations that demonstrate the potential of the 
mathematical model of adaptive acquisition and compared 
our results to known limited angle, non adaptive 
acquisition methods.  

Our future research will focus on creating more realistic 
simulations of CT acquisition. We plan to enhance our 
algorithm to perform well on more realistic images and  
model more accurately adaptive low-dose radiation, 
beyond the simplistic model of the total number of line 
projections (dose in a CT scan depends on the machine’s 
flux intensity, with lower flux intensity implying lower 
dose, but higher Poisson-type noise in the detected 
measurements). We also plan to simulate true 3D scanning 
and add motion correction. 

Lastly, as discussed in Section 4, running time is a 
drawback of the ATA algorithm.  At each iteration, the 
ATA algorithm updates the sampling matrix A  and solves 
the whole optimization problem again, which is an 
expensive computational task. We plan to explore an 
efficient updating scheme that allows the current 
approximated image to be modified solely by the newly 
acquired line projections and by the previous 
approximated image. This efficient scheme will eliminate 
the need to solve the whole problem from the beginning. 
Furthermore, it should be interesting to test other TV 
solvers such as [19] and see if they (or a modified version 
of them) are better suited to the adaptive scheme proposed 
in this paper. 
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