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Abstract

Several recent studies demonstrated that higher or-
der (non-linear) functionals can yield outstanding perfor-
mances in the contexts of segmentation, co-segmentation
and tracking. In general, higher order functionals result
in difficult problems that are not amenable to standard op-
timizers, and most of the existing works investigated par-
ticular forms of such functionals. In this study, we derive
general bounds for a broad class of higher order function-
als. By introducing auxiliary variables and invoking the
Jensen’s inequality as well as some convexity arguments, we
prove that these bounds are auxiliary functionals for vari-
ous non-linear terms, which include but are not limited to
several affinity measures on the distributions or moments of
segment appearance and shape, as well as soft constraints
on segment volume. From these general-form bounds, we
state various non-linear problems as the optimization of
auxiliary functionals by graph cuts. The proposed bound
optimizers are derivative-free, and consistently yield very
steep functional decreases, thereby converging within a few
graph cuts. We report several experiments on color and
medical data, along with quantitative comparisons to state-
of-the-art methods. The results demonstrate competitive
performances of the proposed algorithms in regard to ac-
curacy and convergence speed, and confirm their potential
in various vision and medical applications.

1. Introduction
A large class of segmentation, co-segmentation and

tracking problems in computer vision and medical imaging

seek image-domain segments that optimize functionals of

the following general form:

E(S) = R(S) +Q(S), (1)

where term R(S) describes some regional properties of the

segments and Q(S) is a regularization term, which enforces

segment-boundary smoothness. Unfortunately, most of the

existing powerful and global optimizers, e.g., discrete graph

cuts [5] or continuous convex-relaxation techniques [6], are

restricted to special linear (or unary) forms of regional func-

tionals, where R can be expressed as the sum (or inte-

gral in the continuous setting) of individual-pixel penalties

[4, 21, 16].

1.1. Linear functionals

Let Ip = I(p) : Ω ⊂ R
2 → Z ⊂ R

n, n ∈ N
∗, be

an image-feature function defined over a domain Ω. Z is a

space of a feature variable such as intensity, color or texture.

Linear functionals can be expressed in the following general

form [4, 21, 16]:∑
p∈S

g(p) =
∑
Ω

g(p)χS(p) =: 〈g, S〉 (2)

where χS is the characteristic function of segment S ⊂ Ω:

χS(p) =

{
1 if p ∈ S
0 if p ∈ Ω \ S, (3)

and g : Ω → R is an arbitrary scalar function. The log-

likelihood energy commonly used in image segmentation

[4, 21, 16] corresponds to g(p) = log
Mf (Ip)
Mb(Ip)

, where Mf

and Mb are fixed foreground/background models.

Linear functionals are frequently used in vision and med-

ical imaging because they are easily amenable to power-

ful global optimizers. However, as discussed and demon-

strated in several recent studies [9, 20], such linear terms

can impose only a limited set of characteristics on the so-

lutions. Several recent research efforts have demonstrated

that higher order (non-linear) functionals can enforce much

more powerful constraints in various vision [8, 18, 20, 1, 11]

and medical-imaging applications [2, 12].

1.2. Prior art on non-linear functionals

Useful non-linear functionals include but are not lim-

ited to several affinity measures on the distributions or mo-

ments of segment appearance [8, 20, 1, 11, 18] and shape
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[12, 2], as well as soft constraints on segment volume

[8, 24]. For instance, distribution (or histogram) match-

ing formulations, which enforce some consistency between

the feature distribution of the target segment and a given

model, have recently sparked a significant research effort

[8, 11, 20, 1, 18]. These studies proved that, in the con-

text of interactive segmentation [20, 1], tracking [11] and

co-segmentation of image pairs [18], optimizing some non-

linear measures of affinity between distributions/histograms

(e.g, the Kullback-Leibler divergence, Bhattacharyya coef-

ficient or Lj-distances) can yield outstanding performances

unattainable with standard linear terms, and can be very

useful in image retrieval [22].

In general, non-linear functionals result in difficult opti-

mization problems that are not amenable to standard global

optimization techniques. Some notable prior-art studies

investigated specialized optimizers for particular forms of

non-linear functionals. For instance, Rother et al. [22] pio-

neered optimization of the L1-distance between histograms

via graph cuts. They combined some approximation of the

functional with a heuristic linear term to damp the New-

ton’s steps. As discussed in [9], their steps could be in the

direction opposite to the gradient descent. Consequently,

[22] may converge to solutions far from the local minima

and, therefore, it is very sensitive to initializations [23]. For

better initialization, they used a submodular-supermodular

procedure [19] that assumes the functional is supermodu-

lar, and proved that this holds for the L1-distance. In [18],

Mukherjee et al. suggested to replace the L1 by the L2-
distance, arguing that the latter affords some interesting

combinatorial properties, which befit graph cut optimiza-

tion. After linearization of the L2-distance, the problem is

rewritten as the optimization of a quadratic pseudo-boolean

function (QPBF). Although QPBFs are non-submodular,

the ensuing optimization problems allow roof-duality re-

laxation that can be solved by graph cuts [13]. Such re-

laxation yields, however, only a partial solution with some

pixels left unlabeled. Furthermore, the algorithm in [18] is

based on specific properties of the L2-distance and, there-

fore, cannot be applied to other non-linear functionals. In

[1], the authors built a bound optimizer specific for the

Bhattacharyya measure, which yielded very rapid conver-

gences and competitive accuracies/optima. Unfortunately,

the bound derivation in [1] relies on very specific properties

of the Bhattacharyya coefficient, which precludes its use for

any of the other important non-linear functionals.

Active-curve/level-set techniques can address arbitrary

differentiable functionals [17]. By computing a curve evo-

lution equation via a local gradient descent and the Gateâux

derivative, the ensuing solutions may correspond to weak

local minima [1]. Furthermore, in many instances of non-

linear functionals, curve evolution yields computationally

expensive algorithms [1, 17]. For example, the curve

flow optimizing the Bhattacharyya measure is incremen-

tal [1, 17], and requires a large number of iterative up-

dates of computationally costly distributions. As is the

case of many continuous-optimization approaches, the ro-

bustness of curve-evolution algorithms inherently relies on

the choice an approximating numerical solution that is con-

trolled by several crucial parameters (e.g., step size).

In the recent study in [8], Gorelick et al. proposed an

iterative trust-region method, which can address a fairly

general class of differentiable functionals. At each itera-

tion, they used graph cuts to optimize some second-order

approximation of the functional within adaptively selected

step size. This method can make larger moves than stan-

dard curve evolution techniques by finding an optimal com-

bination of gradient descent and Newton’s steps. In some

practical examples, the adaptive schemes in [8] may use a

relatively large number of iterations/cuts to converge. In

the case of distribution (or histogram) based functionals,

each iteration requires a distribution update that can be com-

putationally expensive, more so when the number of bins

is high. Therefore, a large number of iterations/cuts may

lead a heavy computational burden. It is also worth noting

that the method in [8] is not applicable to non-differentiable

functionals, e.g., the L1-distance between histograms [22].

1.3. Bound optimization and auxiliary functionals

Let E(u) be a functional to be optimized over some vari-

able function u. Bound-optimization algorithms proceed

by constructing and optimizing upper bounds of E, which

serve as auxiliary functionals whose optimization is easier

than the original functional:

Definition 1. Given an auxiliary variable ui, A(u, ui) is an
auxiliary functional of E if it satisfies:

E(u) ≤ A(u, ui) (4a)

E(u) = A(u, u) (4b)

Rather than optimizing directly E, we optimize itera-

tively a sequence of auxiliary functionals:

ui+1 = min
u

A(u, ui) , i = 1, 2, . . . (5)

Using the conditions in (4a) and (4b), and by definition

of minimum in (5), we can show that the solutions in (5)

yield a decreasing sequence of E: E(ui) = A(ui, ui) ≥
A(ui+1, ui) ≥ E(ui+1). Therefore, if E is lower bounded,

sequence E(ui) converges to a minimum of E.

Bound optimizers are derivative- and parameter-free al-

gorithms (They do not require the functional to be differ-

entiable, neither do they use optimizer parameters such as

step sizes), and enjoy a strong guarantee: they never worsen

the functional. They can be very efficient because they turn

difficult and, in some instances, very complex optimization
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problems into easier ones [25]. Bound optimization has

yielded efficient solutions for difficult problems in Nonneg-

ative Matrix Factorization [15] and computational statistics

[14], and is gaining interest in machine learning [25]. For

instance, the study [25] demonstrated the power of bound

optimization in solving AdaBoost and logistic regression

models.

The key difficulty in bound optimization is in construct-

ing an appropriate auxiliary functional. On the one hand,

the bound should be close enough to the original functional.

On the other hand, a good auxiliary functional should be

amenable to fast and global solvers.

1.4. Contributions of this study

In this study, we derive general bounds for a broad class

of higher order functionals, which can be expressed as non-

linear combinations of linear terms and their ratios. By in-

troducing auxiliary variables and invoking the Jensen’s in-

equality as well as some convexity arguments, we prove that

these bounds are auxiliary functionals for various non-linear

terms, which include but are not limited to several affinity

measures on the distributions or moments of segment ap-

pearance and shape, as well as soft constraints on segment

volume. From these general-form bounds, we state various

non-linear problems as the optimization of auxiliary func-

tionals by graph cuts. The proposed bound optimizers are

derivative-free, and consistently yield very steep functional

decreases, thereby converging within a few graph cuts (typ-

ically less than 5). We report several experimental evalu-

ations on color and medical data, along with quantitative

comparisons of the proposed bound optimizers to the meth-

ods in [8, 22]. The results demonstrate competitive perfor-

mances of the proposed algorithms in regard to accuracy

and convergence speed, and confirm their potential in vari-

ous vision and medical applications.

2. Non-linear functions of linear terms
In this section, we focus on functionals E = R + Q,

where R is a non-linear term of the following general form:

R(S) =
∑
z∈Z

Fz(〈gz, S〉) (6)

where gz : Ω → R
+, z ∈ Z, is a family of non-negative

scalar functions defined over the image domain, and Fz :
R → R

+, z ∈ Z, is a family of non-negative scalar func-

tions. The following lists some examples of very useful

non-linear regional functionals of the form (6).

2.1. The Lj-distance between histograms

This type of terms enforces an Lj-distance consistency

between the image histogram of the target segment S and a

given model histogram {hz, z ∈ Z}, and is very useful in

co-segmentation [22, 18, 23] and tracking [11]:

∑
z∈Z

∣∣∣∣∣∣hz −
∑
p∈S

δ(Ip − z)

∣∣∣∣∣∣
j

, j ∈ N
∗ (7)

where δ is given by:

δ(x) =

{
1 if x = 0
0 if x 	= 0

(8)

Summation
∑

p∈S δ(Ip − z) counts the number of seg-

ment pixels which fall within bin z. The Lj-distance in

(7) belongs to the general from in (6), with the follow-

ing particular functions: gz(p) = δ(Ip − z), z ∈ Z, and

Fz(t) = |t− hz|j , j ∈ N
∗, z ∈ Z.

2.2. The volume/area penalty function

The volume/area function penalizes a segment S when

its size deviates from a given volume/area v1 [8]:⎛
⎝v1 −

∑
p∈S

1

⎞
⎠2

= (v1 − 〈1, S〉)2 (9)

The volume penalty can be written in the form of (6), with

the following particular functions: gz = 1, z ∈ {1}, and

Fz(t) = (vz − t)2, z ∈ {1}. Note that other interesting

shape-moment penalties can also be written in the form of

(6) [8].

2.3. A general auxiliary functional

In the following, we will derive a family of general

bounds (auxiliary functionals) for non-linear terms of the

form in (6) by introducing auxiliary variables and invoking

the Jensen’s inequality as well as convexity arguments.

Proposition 1. If Fz is convex ∀z ∈ Z, and given an auxil-
iary segment Si, the following functional is an upper bound
of the general non-linear form R(S) in (6), ∀α ∈ R

+ and
for any segment S verifying S ⊂ Si:

Aα(S, S
i) = (1+α)R(Si)−α 〈

b(Si), S
〉
+

〈∑
z∈Z

aiz, S
−
〉

(10)

with S− = Si \ S, and functions aiz and b given by:

aiz(p) =
gz(p)

[
Fz(0)− Fz

(〈
gz, S

i
〉)]

〈gz, Si〉 (11a)

b(Si) =
R(Si)

〈1, Si〉 (11b)
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Proof. Let us first recall the Jensen’s inequality:

Lemma 1. The Jensen’s inequality: Let F : D ⊂ R→ R

be a convex function defined over a convex domain D, and
P a finite set. If xp ∈ D ∀p ∈ P , and αp ≥ 0 ∀p ∈ P
with

∑
p∈P αp = 1, then we have [7]:

F

⎛
⎝∑

p∈P
αpxp

⎞
⎠ ≤

∑
p

αpF (xp) (12)

Now, for S ⊂ Si, let us re-write 〈gz, S〉 as follows:

〈gz, S〉 =
∑
p∈S

gz(p)χS(p) =
∑
p∈Si

gz(p)χS(p) (13)

The second equality in (13) is due to the fact that, when

S ⊂ Si, we have χS(p) = 0 ∀p ∈ Si \ S. Using (13), we

can further re-write Fz(〈gz, S〉) in the following form:

Fz (〈gz, S〉) =Fz

⎛
⎝∑

p∈Si

gz(p)χS(p)

⎞
⎠

=Fz

⎛
⎜⎜⎜⎝∑

p∈Si

gz(p)

〈gz, Si〉︸ ︷︷ ︸
αp

〈
gz, S

i
〉
χS(p)︸ ︷︷ ︸

xp

⎞
⎟⎟⎟⎠

(14)

Notice that for αp = gz(p)
〈gz,Si〉 , we have:

∑
p∈Si

αp =
∑
p∈Si

gz(p)

〈gz, Si〉 =
〈
gz, S

i
〉

〈gz, Si〉 = 1 (15)

Therefore, for Fz convex, applying the Jensen’s inequality

to (14) with xp =
〈
gz, S

i
〉
χS(p) and αp = gz(p)

〈gz,Si〉 yields

the following bound on Fz (〈gz, S〉):

Fz (〈gz, S〉) ≤
∑
p∈Si

gz(p)

〈gz, Si〉Fz

(〈
gz, S

i
〉
χS(p)

)

=
∑
p∈S

gz(p)

〈gz, Si〉Fz

(〈
gz, S

i
〉)

+
∑
p∈S−

gz(p)

〈gz, Si〉Fz(0)

=
〈gz, S〉
〈gz, Si〉Fz

(〈
gz, S

i
〉)

+
〈gz, S−〉
〈gz, Si〉 Fz(0)

(16)

where S− = Si \ S.

Also, because S = Si\S−, we have the following equal-

ity:

〈gz, S〉
〈gz, Si〉 =

〈
gz, S

i
〉− 〈gz, S−〉
〈gz, Si〉 = 1− 〈gz, S

−〉
〈gz, Si〉 (17)

Plugging (17) in the bound in (16), and after some manipu-

lations, we obtain:

Fz(〈gz, S〉) ≤ Fz(
〈
gz, S

i
〉
) +

〈
aiz, S

−〉 (18)

Summing both sides of inequality (18) over z, we obtain the

following bound of the general non-linear functional in (6):

R(S) ≤ R(Si) +

〈∑
z∈Z

aiz, S
−
〉

(19)

Now notice the following inequality ∀α ∈ R
+

R(Si) =(1 + α)R(Si)− αR(Si)

≤(1 + α)R(Si)− αR(Si)
〈1, S〉
〈1, Si〉

=(1 + α)R(Si)− α
〈
b(Si), S

〉
(20)

The inequality in (20) holds when R is nonnegative (this is

the case when Fz is nonnegative), and is due to the fact that

〈1, S〉 ≤ 〈
1, Si

〉
for S ⊂ Si.

Finally, combining (19) and (20) proves proposition 1.

Proposition 2. If Fz is convex ∀z ∈ Z, Aα(S, S
i) +Q(S)

is an auxiliary functional of E(S) = R(S)+Q(S) for non-
linear terms R(S) of the form in (6), ∀α ∈ R

+ and for any
segment S verifying S ⊂ Si

Proof. To prove that Aα+Q is an auxiliary function of E =
R + Q, we need to have two conditions: (i) Aα(S, S

i) +
Q(S) obeys the bound condition of the form in (4a), i.e.,

E(S) ≤ Aα(S, S
i) + Q(S); and (ii) Aα(S, S) + Q(S)

verifies the equality condition of the form in (4b), i.e.,

Aα(S, S) + Q(S) = E(S). The bound condition follows

directly from the result in proposition 1. For the equality

condition, it suffices to see that when Si = S, we have

S− = Si \ S = ∅, i.e., χS−(p) = 0 ∀p ∈ Ω. Therefore,

we have
〈∑

z∈Z aiz, S
−〉 = 0. Now writing Aα(S, S

i) for

Si = S and adding Q(S) to both sides, we obtain:

Aα(S, S) +Q(S) =(1 + α)R(S)− α

〈
R(S)

〈1, S〉 , S
〉
+Q(S)

=(1 + α)R(S)− αR(S)
〈1, S〉
〈1, S〉 +Q(S)

=R(S) +Q(S) = E(S) (21)
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3. Non-linear functions of the ratio of linear
terms

In this section, we focus on functionals E = J + Q,

where J is a non-linear, general-form functional containing

the ratio of linear terms:

J(S) =
∑
z∈Z

Fz

( 〈gz, S〉
〈hz, S〉

)
(22)

where gz, hz : Ω → R
+, z ∈ Z, are two families of non-

negative scalar functions defined over the image domain,

and Fz : C ⊂ R→ R, z ∈ Z, is a family of scalar functions

defined over a convex domain C. High-order functionals of

the form (22) are very useful in vision [8, 20, 1] and medical

applications [2, 12]. They include but are not limited to

several affinity measures on the distributions or moments of

segment appearance [8, 20, 1] and shape [12, 2]. Following

are some examples of functionals of the form (22).

3.1. Probability product kernels

Here we introduce the probability product kernel [10] as

a segmentation constraint that can be viewed as a general-

ization of the Bhattacharyya measure, which has recently

led to competitive performances in segmentation [20, 1]:

−
∑
Z

( 〈kz, S〉
〈1, S〉

)ρ

Mρ
z , ρ ∈]0, 1] (23)

where {Mz, z ∈ Z} is a model probability distribution

learned a priori (or interactively), and ratio
〈kz,S〉
〈1,S〉 is the ker-

nel density estimate of the distribution of image data within

segment S, with kz the Gaussian kernel (σ the width of the

kernel):

kz(p) =
1

(2πσ2)
n
2
exp−

‖z−Ip‖2
2σ2 (24)

Minimization of (23) aims at finding a segment S whose

distribution most closely matches model {Mz, z ∈ Z}.
Notice that the Bhattacharyya segmentation measure in

[1, 20, 8] is a particular case of (23), which corresponds

to ρ = 1
2 .

3.2. Kullback-Leibler divergence

Minimization of this type of constraints enforces a

Kullback-Leibler consistency between the distribution of

the target segment S and a given model {Mz, z ∈ Z} [17]:

∑
z∈Z

Mz log

⎛
⎝ Mz

〈kz,S〉
〈1,S〉 + ε

⎞
⎠ =

∑
z∈Z

Mz logMz︸ ︷︷ ︸
Constant

−
∑
z∈Z

Mz log

( 〈kz, S〉
〈1, S〉 + ε

)
︸ ︷︷ ︸

V ariable

(25)

ε is a small positive constant that avoids division by 0.

3.3. A general auxiliary functional

Proposition 3. If ∀z ∈ Z we have Fz convex, monoton-
ically decreasing and defined at 0, and given an auxiliary
segment Si, the following functional is an upper bound of
the general form J(S) in (22), S ⊂ Si, ∀α ∈ R

+ if J is
non-negative and for α = 0 if J is negative:

Bα(S, S
i) = (1+α)J(Si)−α

〈
d(Si), S

〉
+

〈∑
z∈Z

ciz, S
−
〉

(26)

ciz(p) =

gz(p)

[
Fz(0)− Fz

( 〈gz,Si〉
〈hz,Si〉

)]
〈gz, Si〉 (27a)

d(Si) =
J(Si)

〈1, Si〉 (27b)

Proof. Because hz is nonnegative and S ⊂ Si, we have

〈hz, S〉 ≤
〈
hz, S

i
〉
. Therefore, when Fz is monotonically

decreasing and using the fact that 〈gz, R〉 is nonnegative, we

have the following upper bound on the general non-linear

term in (22):

J(S) =
∑
z∈Z

Fz

( 〈gz, S〉
〈hz, S〉

)
≤

∑
z∈Z

Fz

( 〈gz, S〉
〈hz, Si〉

)

=
∑
z∈Z

Gi
z (〈gz, S〉) (28)

where Gi
z(t) is given by: Gi

z(t) = Fz

(
t

〈hz,Si〉
)

. Now be-

cause Fz is convex, Gi
z is also convex and the upper bound

in (28) reduces to the general non-linear term of the type

in (6). Therefore, we can apply the result we obtained ear-

lier in Eq. (19) to
∑

z∈Z Gi
z (〈gz, S〉), thereby getting (after

some manipulations):

J(S) ≤ J(Si) +

〈∑
z∈Z

ciz, S
−
〉

(29)
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The rest of the proof follows the same steps as the proof of

proposition 1.

Proposition 4. If ∀z ∈ Z we have Fz convex, monoton-
ically decreasing and defined at 0, Bα(S, S

i) + Q(S) is
an auxiliary functional of E(S) = J(S) + Q(S) (with Si

auxiliary segment and S ⊂ Si) for non-linear terms J(S)
of the form in (22), ∀α ∈ R

+ if J is non-negative and for
α = 0 if J is negative

Proof. The proof follows the same steps as the proof of

proposition 2.

Note on the Bhattacharyya bound in [1]: Although the

derivation in [1] is completely different from our general-

form derivation (The derivation in [1] relies on very specific

properties of Bhattacharyya coefficient, and is not applica-

ble to other non-linear terms), we can show that the Bhat-

tacharyya bound in [1] can be obtained easily as a special

case of Bα(S, S
i).

4. A general bound-optimization algorithm
The results in propositions 2 and 4 instruct us to de-

rive the following general-purpose bound-optimization al-

gorithm for non-linear functionals of the forms E(S) =
R(S) + Q(S) with R of the type (6) and E(S) = J(S) +
Q(S) with J of the type (22).

Algorithm 1 Bound optimization cuts

1. Iter. i = 0: Initialize the auxiliary segment by S0; S0

can be a trivial segment corresponding to the whole

image domain, i.e., S0 = Ω.

2. For each iter. i, i = 0, 1, 2, . . . , repeat the following

steps until convergence:

(a) Update step: Update the auxiliary functional by

computing

aiz and b(Si) if E = R+Q

ciz and d(Si) if E = J +Q

(b) Optimization step: optimize the auxiliary func-

tional over S with a graph cut (Si is fixed):

Si+1 = min
S⊂Si

Aα(S, S
i) +Q(S) if E = R+Q

Si+1 = min
S⊂Si

Bα(S, S
i) +Q(S) if E = J +Q

Optimization in step 2.b with a graph cut: Auxiliary

functionals Aα+Q and Bα+Q are in the form of a sum of

unary and pairwise (submodular) terms. In combinatorial

optimization, a global optimum of such sum can be com-

puted efficiently in low-order polynomial time with a graph

cut [5]. Furthermore, condition S ⊂ Si can be easily im-

posed on the solution by adding a hard constraint [3]. We

used the well-known Boykov-Kolmogorov (BK) algorithm

[5] for the optimization in step 2.b. Here we omit the details

of the BK algorithm and hard constraints. Such details are

well-known in prior art, and can be found in [5, 3].

5. Experiments
We report several experiments on color and medical

data, along with quantitative comparisons to the meth-

ods in [8, 22] in regard to convergence speed and accu-

racy. Each of the functionals is combined with a stan-

dard 16-neighborhood boundary smoothness term Q(S) =
λ
∑

(p,q) wpq[1 − δ(χS(p) − χS(q))] [8], with wpq some

contrast-sensitive weights.

Convergence-speed example (L2-distance): The exam-

ple in Fig. 1 depicts a comparison to the recent method in

[8], and demonstrates that auxiliary cuts can lead to a com-

petitive performance in regard to convergence speed and ac-

curacy. We used the same functional (E = R + Q, with R
theL2-distance between histograms and smoothness weight

λ = 10) and initialization for both methods. Similarly to the

experiments in [8], the model histogram was obtained from

the ground-truth segment. The feature is color specified in

RGB coordinates. The plots show the functional and error

(number of misclassified pixels) as functions of the iteration

number, and the arrows in the plots indicate the convergence

points. The bound optimizer yielded a faster decrease of

the functional and converged after 4 iterations (it requires

only 1 graph cut per iteration), whereas the method in [8]

performed 10 iterations to reach convergence (and may re-

quire more that one graph cut per iteration). Notice that the

proposed method yielded a lower error, which indicates that

the non-linear term R obtained at convergence is lower. The

overall functional (i.e., R + Q) is approximately the same

as [8].

Medical image example (L1-distance): Fig. 2 depicts an

example of segmenting the vertebral bodies (VB) in a dif-

ficult lumbar spine MRI image using a simple 4-point user

input. We learned a histogram hV of one VB from the user

input, and used 7×hV as model to segment the whole spine

(lumbar spine images contain 7 VBs). We optimized the

L1-distance1. The features we used for each pixel p are the

means of intensities within 3 different patches centered at p
(1, 3× 3 and 10× 1). The bound optimizer segmented suc-

cessfully all the VBs, whereas the Boykov-Jolly model (B-

J) [4] yielded several incorrect segments (We used the same

training mask, number of bins and smoothness weight for

1Note that for the case of the L1-distance, the method of Gorelick et al.

[8] is not applicable because it requires the functional to be differentiable

(in order to compute a first-order approximation).
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Constraint General form Auxiliary functional Fz(t) gz(p) hz(p)

Volume constraint
in (9)

E = R+Q, with

R(S) given by (6)
Aα(S, S

i) +Q(S),
α ∈ R

+

(t− vz)
2,

z ∈ {1}
1,

z ∈ {1} −−

Lj-distance between
histograms in (7),

j ∈ N
∗

E = R+Q, with

R(S) given by (6)
Aα(S, S

i) +Q(S),
α ∈ R

+
|t− hz|j , j ∈ N

∗

z ∈ Z

δ(Ip − z),
z ∈ Z −−

Probability product
kernels in (23)

E = J +Q, with

J(S) given by (22)
Bα(S, S

i) +Q(S),
α = 0

−(tMz)
ρ, ρ ∈]0, 1],

z ∈ Z
kz in (24),

z ∈ Z
1,

z ∈ Z

Kullback-Leibler
divergence in (25)

E = J +Q, with

J(S) given by (22)
Bα(S, S

i) +Q(S),
α ∈ R

+

−Mz log(t+ ε),
z ∈ Z

kz in (24),

z ∈ Z
1,

z ∈ Z

Table 1. Several examples of segmentation functionals containing non-linear terms of the types R(S) in (6) or J(S) in (22), and the

corresponding auxiliary functionals. Notice that Fz is convex for all the examples, and is monotonically decreasing for the examples

involving form J(S) in (22).

Gorelick et.�alThis�methodGround�TruthInitialization

Figure 1. L2-distance example: log-scale plots of the functional

and distance from ground truth (or error) for bound optimization

and the method in [8]. The bound optimizer yielded a steeper

decrease in the error/functional (the arrows indicate convergence

points). Notice that we obtained a lower error, which indicates

that the bound optimizer yielded a lower non-linear term R at con-

vergence. The overall functional at convergence (i.e., R + Q) is

approximately the same as [8]. λ = 10; Number of bins = 643;

α=1.

both methods). This is expected because the B-J model does

not embed higher order information. Similarly to the previ-

ous experiment, the L1-distance bound optimizer yielded a

steep decrease of the functional, using only 4 graph cuts.

Comparisons on the GrabCut data: We report a quantita-

tive evaluation of the bound optimizer (the L2-distance ver-

sion) on the GrabCut database [22] (50 color images with

ground-truth segmentations) along with a comparison with

the histogram-matching method of Rother et al. [22] (refer

to Table 2). Similar evaluations were performed on the same

data in [22]: Given a model learned from the ground truth,

each image is segmented and the average error (percentage

of misclassified pixels) w.r.t the ground truth was assessed.

The parameters were the same for all the images: λ = 8 and

α = 0.5. The feature is color specified in RGB coordinates.

The number of bins is 192 per channel. For each image, the

User�input
Result

User
input

Iter�2

User�input

Result B�J

Initial
segment

Iter.�3Iter.�2

Figure 2. Spine image segmentation with two different meth-

ods: the L1-distance bound optimizer and the Boykov-Jolly (B-J)

model [4]. λ = 0.5; Number of bins: 643; α = 10−2.

Method
Bound optimizer

(L2-distance)
Rother et al. [22]

Error 1.09% 2.33%

Table 2. Evaluation of histogram matching on the GrabCut dataset

(50 color images): average error for the bound optimizer (L2-
distance) and the method of Rother et al. [22].

initial segment is trivial: S0 = Ω. The results in Table 2

demonstrate that the bound optimizer obtained a significant

improvement in accuracy over the method in [22].

A representative set of the results we obtained on the

GrabCut data is shown in Fig. 3. Even though each of

these examples contains a camouflage (an overlap between

the distributions of the foreground/background segments),

the bound optimizer obtained accurate image partitions, and

consistently converged within less than 5 graph cuts. On a

E5440 quad core 2.83 GHz Xeon machine, with a 3.25GB

of RAM, the bound optimizer required between 3 and 6 sec-

onds to process an image.

Example with the KL divergence: The example in Fig.

4 confirms the fast convergence and very steep functional
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4cuts
2.43sInitial�segment Initial�segment

5cuts
4.57s

Initial�segment
4cuts
6.26s Initial�segment

4cuts
2.73s

Figure 3. A representative sample of the segmentations obtained

with the bound optimizer (L2-distance) using some camouflage

examples in the GrabCut data. For each example, we give the

number of cuts/iterations before convergence and the CPU time.

Figure 4. An example with the KL divergence: λ = 10−3; Num-

ber of bins: 643; α = 10−2. The plot depicts the functional versus

the number of cuts/iterations.

decrease obtained by the proposed optimizers in the case of

the KL divergence (we used an example from the GrabCut

data). We show the initial/final segments, and plot the func-

tional versus the number of iterations. For this example, the

bound optimizer required only two graph cuts.

References
[1] I. Ben Ayed, H.-M. Chen, K. Punithakumar, I. Ross, and

S. Li. Graph cut segmentation with a global constraint: Re-

covering region distribution via a bound of the bhattacharyya

measure. In CVPR, pages 3288–3295, 2010. 1, 2, 5, 6

[2] I. Ben Ayed, K. Punithakumar, G. J. Garvin, W. Romano, and

S. Li. Graph cuts with invariant object-interaction priors:

Application to intervertebral disc segmentation. In IPMI,
pages 221–232, 2011. 1, 2, 5

[3] Y. Boykov and G. Funka Lea. Graph cuts and efficient n-

d image segmentation. International Journal of Computer
Vision, 70(2):109–131, 2006. 6

[4] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal

boundary and region segmentation of objects in n-d images.

In ICCV, pages 105–112, 2001. 1, 6, 7

[5] Y. Boykov and V. Kolmogorov. An experimental comparison

of min-cut/max- flow algorithms for energy minimization in

vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(9):1124–1137, 2004. 1, 6

[6] A. Chambolle and T. Pock. A first-order primal-dual al-

gorithm for convex problems with applications to imaging.

Journal of Mathematical Imaging and Vision, 40(1):120–

145, 2011. 1

[7] T. M. Cover and J. A. Thomas. Elements of Information
Theory. John Wiley & Sons, 1991. 4

[8] L. Gorelick, F. R. Schmidt, and Y. Boykov. Fast trust re-

gion for segmentation. In IEEE conference on Computer
Vision and Pattern Recognition (CVPR), Portland, Oregon,

June 2013. 1, 2, 3, 5, 6, 7

[9] L. Gorelick, F. R. Schmidt, Y. Boykov, A. Delong, and

A. Ward. Segmentation with non-linear regional constraints

via line-search cuts. In ECCV, pages 583–597, 2012. 1, 2

[10] T. Jebara, R. I. Kondor, and A. Howard. Probability product

kernels. Journal of Machine Learning Research, 5:819–844,

2004. 5

[11] H. Jiang. Linear solution to scale invariant global figure

ground separation. In CVPR, pages 678–685, 2012. 1, 2,

3

[12] M. Klodt and D. Cremers. A convex framework for im-

age segmentation with moment constraints. In ICCV, pages

2236–2243, 2011. 1, 2, 5

[13] V. Kolmogorov and C. Rother. Minimizing nonsubmodu-

lar functions with graph cuts-a review. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(7):1274–

1279, 2007. 2

[14] K. Lange, D. R. Hunter, and I. Yang. Optimization transfer

using surrogate objective functions. Journal of Computa-
tional and Graphical Statistics, 9(1):1–20, 2000. 3

[15] D. D. Lee and H. S. Seung. Algorithms for non-negative

matrix factorization. In NIPS, pages 556–562, 2000. 3

[16] V. Lempitsky, P. Kohli, C. Rother, and T. Sharp. Image seg-

mentation with a bounding box prior. In ICCV, pages 277–

284, 2009. 1

[17] A. Mitiche and I. Ben Ayed. Variational and Level Set Meth-
ods in Image Segmentation. Springer, first edition edition,

2010. 2, 5

[18] L. Mukherjee, V. Singh, and C. R. Dyer. Half-integrality

based algorithms for cosegmentation of images. In CVPR,

pages 2028–2035, 2009. 1, 2, 3

[19] M. Narasimhan and J. A. Bilmes. Submodular-supermodular

procedure with applications to discriminative structure learn-

ing. In UAI, pages 404–412, 2005. 2

[20] V.-Q. Pham, K. Takahashi, and T. Naemura. Foreground-

background segmentation using iterated distribution match-

ing. In CVPR, pages 2113–2120, 2011. 1, 2, 5

[21] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interac-

tive foreground extraction using iterated graph cuts. ACM
Transactions on Graphics, 23:309–314, 2004. 1

[22] C. Rother, T. P. Minka, A. Blake, and V. Kolmogorov. Coseg-

mentation of image pairs by histogram matching - incorpo-

rating a global constraint into mrfs. In CVPR, pages 993–

1000, 2006. 2, 3, 6, 7

[23] S. Vicente, V. Kolmogorov, and C. Rother. Cosegmentation

revisited: Models and optimization. In ECCV(2), pages 465–

479, 2010. 2, 3

[24] O. J. Woodford, C. Rother, and V. Kolmogorov. A global

perspective on map inference for low-level vision. In ICCV,

pages 2319–2326, 2009. 2

[25] Z. Zhang, J. T. Kwok, and D.-Y. Yeung. Surrogate maxi-

mization/minimization algorithms and extensions. Machine
Learning, 69:1–33, 2007. 3

13091309130913111311


