Online Robust Dictionary Learning

Cewu Lu, Jiaping Shi, Jiaya Jia; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 415-422

Abstract


Online dictionary learning is particularly useful for processing large-scale and dynamic data in computer vision. It, however, faces the major difficulty to incorporate robust functions, rather than the square data fitting term, to handle outliers in training data. In this paper, we propose a new online framework enabling the use of ersparse data fitting term in robust dictionary learning, notably enhancing the usability and practicality of this important technique. Extensive experiments have been carried out to validate our new framework.

Related Material


[pdf]
[bibtex]
@InProceedings{Lu_2013_CVPR,
author = {Lu, Cewu and Shi, Jiaping and Jia, Jiaya},
title = {Online Robust Dictionary Learning},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2013}
}