Rolling Riemannian Manifolds to Solve the Multi-class Classification Problem

Rui Caseiro, Pedro Martins, Joao F. Henriques, Fatima Silva Leite, Jorge Batista; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 41-48

Abstract


In the past few years there has been a growing interest on geometric frameworks to learn supervised classification models on Riemannian manifolds [31, 27]. A popular framework, valid over any Riemannian manifold, was proposed in [31] for binary classification. Once moving from binary to multi-class classification this paradigm is not valid anymore, due to the spread of multiple positive classes on the manifold [27]. It is then natural to ask whether the multi-class paradigm could be extended to operate on a large class of Riemannian manifolds. We propose a mathematically well-founded classification paradigm that allows to extend the work in [31] to multi-class models, taking into account the structure of the space. The idea is to project all the data from the manifold onto an affine tangent space at a particular point. To mitigate the distortion induced by local diffeomorphisms, we introduce for the first time in the computer vision community a well-founded mathematical concept, so-called Rolling map [21, 16]. The novelty in this alternate school of thought is that the manifold will be firstly rolled (without slipping or twisting) as a rigid body, then the given data is unwrapped onto the affine tangent space, where the classification is performed.

Related Material


[pdf]
[bibtex]
@InProceedings{Caseiro_2013_CVPR,
author = {Caseiro, Rui and Martins, Pedro and Henriques, Joao F. and Silva Leite, Fatima and Batista, Jorge},
title = {Rolling Riemannian Manifolds to Solve the Multi-class Classification Problem},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2013}
}