
Towards autonomous navigation of miniature UAV

Roland Brockers
Jet Propulsion Laboratory
brockers@jpl.nasa.gov

Martin Humenberger
Austrian Institute of Technology
martin.humenberger@ait.ac.at

Stephan Weiss
Jet Propulsion Laboratory
Stephan.Weiss@ieee.org

Larry Matthies
Jet Propulsion Laboratory

lhm@jpl.nasa.gov

Abstract

Micro air vehicles such as miniature rotorcrafts require
high-precision and fast localization updates for their con-
trol, but cannot carry large payloads. Therefore, only small
and light-weight sensors and processing units can be de-
ployed on such platforms, favoring vision-based solutions
that use light weight cameras and run on small embedded
computing platforms. In this paper, we propose a navi-
gation framework to provide a small quadrotor UAV with
accurate state estimation for high speed control including
6DoF pose and sensor self-calibration. Our method al-
lows very fast deployment without prior calibration proce-
dures literally rendering the vehicle a throw-and-go plat-
form. Additionally, we demonstrate hazard-avoiding au-
tonomous landing to showcase a high-level navigation ca-
pability that relies on the low-level pose estimation results
and is executed on the same embedded platform. We explain
our hardware-specific implementation on a 12g processing
unit and show real-world end-to-end results.

1. Introduction
Miniature rotorcraft platforms have several advantages

in exploration and reconnaissance missions since they can
operate in highly cluttered environments (forest, close to the
ground) or confined spaces (indoors, collapsed buildings,
caves) and offer stealth from their small size. But in order
to operate these platforms safely, fast and accurate pose esti-
mation that is independent from external sensors (e.g. GPS)
is needed for control.

Literature has shown that a viable solution for GPS in-
dependent pose estimation is to use visual and inertial sen-
sors [6, 11]. However, a major algorithmic challenge is to
process sensor information at high rate to provide vehicle
control and higher level tasks with real-time position infor-
mation and vehicle states. Since micro rotorcrafts can only
carry a few grams of payload including batteries, this has to
be accomplished with a very small weight and power bud-

Figure 1. Asctec Hummingbird with Odroid-U2 flight computer

mounted on top.

get. Consequently, only light-weight sensors and process-
ing units can be used on such platforms, favoring vision-
based pose estimation solutions that use small light-weight
cameras and MEMS (microelectromechanical systems) in-
ertial sensors. As recent developments in multi-core smart-
phone processors are driven by the same size, weight, and
power (SWaP) constraints, micro aerial vehicles (MAVs)
can directly benefit from new products in this area that
provide more computational resources at lower power bud-
gets and low weight, enabling miniaturization of aerial plat-
forms that are able to perform navigation tasks fully au-
tonomously. Additionally, novel algorithmic implementa-
tions with minimal computational complexity, such as pre-
sented in this paper, are required.

Once pose estimation is available, higher level au-
tonomous navigation tasks which leverage and require this
information can be executed. Examples for such tasks are:
autonomous landing, ingress, surveillance, exploration, and
other. Autonomous landing is especially important not only
for safety reasons, but also for mission endurance. Small
rotorcrafts inherently suffer from overall short mission en-
durance, since payload restrictions do not allow carrying
large batteries. For surveillance or exploration tasks, en-
durance can be greatly improved by not requiring the plat-
form to be airborne at all time. Instead, such tasks may
even favor a steady quiet observer at a strategic location
(e.g. high vantage points like rooftops or on top of telephone

631



poles) - still with the ability to move if required - which also
could include re-charging while in sleep mode (e.g. from
solar cells). Such a capability allows long term missions,
but introduces additional constraints on the algorithm side:
First, to eliminate memory and processing power issues, all
algorithms need to run at constant complexity with a con-
stant maximal memory footprint, independently of mission
length and area, which is particularly true for the pose es-
timation module. Second, time and impacts with the envi-
ronment may change sensor extrinsics. To ensure long-term
operation, the pose estimator not only has to provide accu-
rate pose information but also needs to continuously self-
calibrate the system. Third, since a base station may not
be within communication reach, all algorithms have to be
self-contained and executed on-board the vehicle.

In this paper, we introduce a novel implementation of
a fully self-contained, self-calibrating navigation frame-
work on an embedded, very small form-factor flight com-
puter (12grams) that allows to autonomously control a small
rotorcraft UAV (Figure 1) in GPS denied environments.
Our framework enables quick deployment (throw-and-go),
and performs autonomous landing on elevated surfaces
as a high-level navigation task example, which we chose
because of three reasons: 1) Landing requires accurate
and continuous pose estimation over large scale changes
(i.e. from altitude to touch down). Thus, it implicitly shows
the capabilities of our underlying estimator. 2) It demon-
strates how the information of our robust low-level pose es-
timator can be further leveraged and integrated to improve
subsequent high level tasks. 3) The computational complex-
ity of 3D reconstruction and landing site detection needs to
be tractable on such low SWaP devices.

The remainder of the paper is organized as follows: Sec-
tion 2 gives an overview of our vision-based pose estima-
tion framework including related work and a short introduc-
tion of its self-calibration and the underlying filter approach.
Section 3 describes our autonomous landing algorithm, and
details our approach for 3D reconstruction and landing site
detection. Section 4 introduces the on-board implementa-
tion, provides a performance evaluation, and presents ex-
perimental results, whereas Section 5 concludes the paper.

2. GPS Independent Pose Estimation

Autonomous flight in unknown environments excludes
the use of motion capture systems, and using GPS is not
always an option since it may be unavailable due to ef-
fects such as shadowing or multipath propagation in city-
like environments. Therefore, commonly used sensors for
pose estimation are stereo [8] and monocular cameras [20]
as well as laser scanners [16]. Since heavy sensors cannot
be used on low SWaP platforms, monocular, visual-inertial
pose estimators might be the most viable choice for MAVs.
In our previous work, we demonstrated that pose estima-
tion based on the fusion of visual information from a single
camera and inertial measurements from an IMU can be used

Figure 2. Setup illustrating the robot body with its sensors with

respect to a world reference frame. The system state vector is

X = {piw viw qiw bω ba λ psi q
s
i } and piw and qiw denote the robot’s

position and attitude in the world frame.

for simultaneously estimating pose information and system
calibration parameters (such as IMU biases and sensor ex-
trinsics). This self-calibrating aspect eliminates the need
of pre-launch calibration procedures and renders the system
power-on-and-go

In our current framework, we propose a hierarchical ar-
chitecture for our vision-front-end with a downward look-
ing camera. Using the camera as a velocity sensor based on
inertial-optical flow (IOF), allows to estimate full attitude
and drift-free metric distance to the overflown terrain [22],
which we use for rapid deployment and emergency maneu-
vers. For accurate position estimation, we use a keyframe-
based visual self localization and mapping (VSLAM) strat-
egy to render the camera into a 6DoF position sensor. The
VSLAM approach is based on [7] but tailored to run on our
embedded architecture with constant computational com-
plexity by deploying a sliding window, local mapping ap-
proach [20]. Whereas our velocity based IOF approach
drifts parallel to the terrain our VSLAM approach is locally
drift free and better suited for long-term MAV navigation
in large outdoor environments – only limited by the battery
life-time and not by processing power nor memory. But it
requires specific motion for initialization. Since the IOF
based approach does not need any particular initialization,
it can be used for very quick deployment of the MAV – even
by simply throwing it in the air. Thus, for rapid deployment,
the thrown MAV will quickly stabilize itself with our IOF
approach, and then autonomously initialize our VSLAM ap-
proach as shown in [21] – rendering it a throw-and-go GPS
independent system.

Both, the pose of the VSLAM algorithm as well as the
output of the IOF, are fused with the measurements of an
IMU using an Extended Kalman Filter (EKF). The EKF
prediction and update steps are distributed among differ-
ent processing units of the MAV because of their compu-
tational requirements as described in [19]. The state of the
filter is composed of the position piw, the attitude quater-
nion qiw, the velocity viw of the IMU in the world frame,
the gyroscope and accelerometer biases bω and ba, and the
metric scale factor λ. Additionally, the extrinsic calibra-
tion parameters describing the relative rotation qsi and po-
sition psi between the IMU and the camera frames were
also added. This yields a 24-element state vector X =

{piTw vi
T

w qi
T

w bTω bTa λ psi q
s
i }. Figure 2 depicts the setup with

632



Figure 3. Autonomous landing overview: New input images are stored in a frame list, together with detected features, and camera poses.

For selected image pairs, camera motion is estimated, and the 3D model determined. The result of the landing site detection is a landing

map which labels all pixels as: green (ground level), red (on roof top but unsafe), orange (insufficient space), or blue (safe landing area).

The location with the highest confidence is labeled by × and will be approached with a two waypoint trajectory.

the IMU and camera coordinate frames and the state vari-
ables introduced above. Details about the EKF prediction
and update equations for the VSLAM and IOF approach can
be found in [20] and [22]. We note that for both approaches
– VSLAM and IOF – roll, pitch, and the visual scale are
observable. This is crucial to maintain a gravity aligned and
metric navigation frame even in long-term missions.

3. Autonomous Landing

To demonstrate a high-level navigation task that uses
pose information from the on-board estimation framework,
we implemented an autonomous landing algorithm on-
board the vehicle that analyzes images from a downward-
looking camera to reconstruct the over flown scene, and de-
tects elevated, flat surfaces, as high-vantage point landing
areas. Our approach uses dense monocular 3D reconstruc-
tion and selects landing sites based on several surface crite-
ria, such as flatness, space to fit the vehicle, and distance to
obstacles.

A significant amount of work has been done on au-
tonomous landing in unknown terrain for large helicopters
using large sensor suites, such as lidar [14] or large scale
stereo bars [9] that are too heavy for deployment on MAVs.
Approaches that use monocular vision inputs to map and an-
alyze terrain, often determine a surface description, such as
an elevation map, from a combination of IMU and camera
inputs in order to find potential landing sites. If 3D infor-
mation is used, a sparse 3D reconstruction is usually done
by tracking features [10, 18], estimating geometry such as
planes [1] or using homographies [2] to determine a domi-
nant planar surface for landing. Examples for methods that
deploy dense monocular 3D reconstruction are [17, 12, 13]
which use Bayesian and variational estimation models with

known camera motion. All of them require powerful pro-
cessing hardware, such as GPUs, to achieve real-time ca-
pability, and are thus not suitable for MAVs. An overview
about earlier work on multi-view 3D reconstruction can be
found in [15].

Our autonomous landing algorithm is especially de-
signed to achieve reasonable short constant processing time
even on limited computing hardware. It consists of three
parts: 1) dense 3D reconstruction of overflown terrain by
motion stereo, 2) analysis of the 3D structure in order to
find potential landing site candidates, and 3) generation of a
two point approach trajectory to maneuver to the best land-
ing site.

3.1. 3D Reconstruction
Dense motion stereo is based on the same principle as

conventional stereo, with the difference that the two views
of a captured scene are generated by a single moving cam-
era instead of a rigid stereo bar. Therefore, camera extrin-
sics (the motion between the two camera positions) have to
be reconstructed for each image pair individually. Intrinsics
do not change and can be estimated in advance. For select-
ing an image pair, we maintain a frame list of the last n
camera frames (Figure 3) consisting of the rectified camera
image, camera pose in world coordinates, extracted feature
points in the image, and a feature track list to record fea-
tures detected in subsequent frames. Image pairs for 3D re-
construction are selected using two criterias: 1) Since depth
accuracy is a function of stereo baseline, we look for images
that were taken at an appropriate distance apart to achieve
enough depth accuracy (at ground level) which depends on
the current altitude of the MAV. 2) We chose a previous im-
age for which a minimum number of features can be tracked
continuously up to the current image. After an image pair

633



is selected, we estimate the motion (rotation R and trans-
lation t) between the two frames with a multi-planar ho-
mography alignment approach [3]. Since t can only be esti-
mated up to scale from a monocular setup, we use the pose
information from our pose estimator to scale the translation
vector. With R and t, stereo rectification can be applied.

The quality of motion estimation strongly depends on
the accuracy of the feature locations and, thus, is scene de-
pendent. To discard poor motion estimates and to prevent
false 3D reconstruction, we calculate the average 3D repro-
jection error of feature pairs and accept only image pairs
with an averaged error in subpixel range. Finally, we use a
real-time, block-matching stereo algorithm [5] to estimate a
disparity map, from which we generate a 3D point cloud to
model the captured scene beneath the MAV.

3.2. Landing Site Detection

After 3D reconstruction, the next step is to find potential
landing candidates. We define the following requirements
for candidate locations that are suitable for safe landing:
1) the surface around a landing site has to be planar, hor-
izontally sloped, and free of obstacles and hazards; 2) it has
to be large enough to fit the MAV; and 3) it has to provide
enough free space around it for a safe approach.

To fulfill these requirements, we developed an efficient
multi-step algorithm which uses the reconstructed range
data to reduce the problem to a basic probabilistic model.
Since our application is targeted to land on an elevated sur-
face, we first remove all candidates close to ground level.
Then we calculate the standard deviation of the disparity
map along the gravity vector, as a measure of surface pla-
narity and slope, and use this value as a landing site confi-
dence. Standard deviation is calculated in an adaptive win-
dow which size depends on the disparity values, and thus,
the MAV’s altitude. In fact, we make sure that the window
size (in pixels) for the standard deviation corresponds to the
spacing (in meters) the MAV needs to land. Thresholding
the so derived landing confidence map results in a binary
landing map which labels all pixels (i.e. landing sites) as
whether or not safe to land.

3.3. Approach Trajectory

The selection of a good landing site is strongly applica-
tion dependent. For perch and stare applications, the MAV
should land close to the edge of the elevated surface, for
emergency or fast landing tasks, a safer location is prefer-
able. In our example, we pick the landing candidate with the
highest confidence and generate two approach waypoints to
execute a landing maneuver, but the selection can easily be
adapted to different scenarios.

For simplicity, we assume that the landing target can be
reached safely by a purely vertical landing maneuver, and
generate a first approach waypoint directly above the land-
ing spot at the current MAV altitude (Figure 3). The second
waypoint is the landing spot itself.

Figure 4. Mastermind flight computer (left) and Odroid-U2 (right).

4. Embedded Implementation

While the previous sections described our algorithms,
this section focuses on their implementation, parameter se-
lection, and design choices on the embedded computing ar-
chitecture on the MAV.

To evaluate performance differences and the influence of
weight reduction, we implemented our algorithms on three
different MAV platforms: 1) an Asctec Pelican quadro-
tor equipped with an Asctec Mastermind flight computer
(Core2Duo, 2x1.86GHz CPU, total weight: ∼1.3kg), 2) an
Asctec Hummingbird quadrotor equipped with an Odroid-
X2 flight computer (total weight: ∼610g), 3) an Asctec
Hummingbird quadrotor equipped with a modified Odroid-
U2 flight computer (total weight: ∼500g) (Figure 1).

Both Asctec MAV platforms use the same low-level au-
topilot board which includes a MEMS IMU. They are ad-
ditionally equipped with a downward-looking Matrix Vi-
sion camera (mvBlueFOX-MLC200wG, CMOS, 752×480,
grayscale, global shutter, max. 90fps, 18.3g with 100 degree
FOV lens) that is connected to the flight computer. The
Odroid boards (manufactured by Hardkernel) are based on
the Samsung Exynos 4412 System-on-a-Chip (SoC), which
includes a quad core microcontroller for mobile applica-
tions that provides four ARM-cortex A9 for parallel com-
putation, while only consuming 2.2W (CPU only). The
Odroid-X2 is a development board which served for initial
implementation and testing, while the Odroid-U2 is our fi-
nal target platform. For our implementation, we removed all
non-necessary components from the U2 resulting in a total
weight of 12g. Details about the different platforms can be
found in Table 1, whereas Figure 4 illustrates the size dif-
ference between the Asctec Mastermind and the Odroid U2.

Figure 5 gives an overview of the distributed implemen-
tation of our approach on the vehicle. All computational
expensive components are executed on the high level flight
computer, including VSLAM, IOF, and pose filter update
(EKF-update) as well as landing site detection. The EKF-
update is passed down to the prediction loop that is executed
on the autopilot board for efficiency reasons. The prediction
loop, which includes IMU integration, and the position con-
troller that uses the estimated pose to control the vehicle,
both run at 1kHz on a dedicated ARM7 microcontroller.

634



Table 1. SWaP and performance of tested computing platforms executing VSLAM pose estimation.

Platform
Size

(footprint) Weight
Power

consumption Cores
Vision front-end
frame rate (Hz) CPU load Workload

Asctec Mastermind 144x135mm 300g 30W 2 30 59% 30%

Odroid-X2 dev. board (4412)

including heat sink 90x94mm 122g 8W 4 30 125% 31%

Odroid-U2 (4412)

stripped down version 48x52mm 12g 5W 4 30 125% 31%

Figure 5. System overview of the vision-aided pose estimation

frame work.

We ported the initial estimator implementation from the
Asctec Mastermind to the 4412 boards by using system spe-
cific changes in order to speed up the execution on the SoCs.
We used a highly ARM-customized Ubuntu version as op-
erating system and Robot Operating System (ROS) for in-
ter process communication. Since both 4412 boards use the
same CPU but different interface hardware, the operation
system setup reflected the different hardware setup, but the
implementation of our navigation software was basically
identical. The straight forward port of the full pose estima-
tion frame work without making use of parallelism yielded
a frame rate of 10Hz for vision updates of the VSLAM
system (EKF update steps were nearly negligible in all im-
plementations). For optimization, we adapted the VSLAM
code to use vectorized NEON instructions for hardware ac-
celeration, and developed a core balancing module to dis-
tribute individual processes among different cores. Our VS-
LAM implementation primarily consist of a Tracking and a
Mapping part which we enforce to be executed on sepa-
rate cores. Tracking is the most critical part, since it yields
instantaneous pose measurements which are used to gener-
ate filter updates. Therefore, running this part on a dedi-
cated core ensures uninterrupted pose handling at all time.
Mapping is responsible for pose refinement and windowed
bundle adjustment, and is thus less time critical. Note, that
the adjustments are refinements and we do not use global
loop closure techniques, which avoids large and abrupt pose

changes. Since the mapping task runs at a lower frequency
and is less time critical, it shares its dedicated core with
other system tasks. After optimization, the VSLAM vi-
sion front-end produced visual pose estimates at a stable
50Hz rate. Our IOF approach was already optimized to run
at 50Hz on a single core 1.6GHz Intel ATOM processor.
ARM specific adaptations and NEON instructions yielded
the same performance on a single core on the 4412. Finally,
the EKF update part of the pose filter software was adapted
to run on the 4412, which completed the software port. The
landing framework was initially implemented on a standard
PC and then ported to the 4412. Software optimization in-
cluded NEON adaptations and the reduction of image res-
olution to 376 × 240 which increased the processing speed
significantly, while still maintaining sufficient resolution.
In fact, our approach compensates for smaller depth reso-
lutions by automatically choosing larger baselines between
selected image frames.

4.1. Performance Comparisons

For performance comparison, we executed our VSLAM-
based visual inertial state estimation framework (vision
front-end and EKF state estimation) on the three different
architectures described in Section 4. The camera frame rate
was reduced to 30Hz on all architectures, since previous ex-
periments suggest that EKF updates at this rate are sufficient
for agile quadcopter navigation when fused with high rate
(1kHz) IMU data [19]. At this new frame rate, the CPU load
on the Core2Duo was 59% of the overall available 200%
(2 cores × 100%) translating to an overall system work-
load of 30%. Running our software at the same frame rate
on the 4412 X2 and U2 resulted in 125% CPU load out of
the available 400% (4 cores × 100%), translating to a 31%
system load. This demonstrates, that we have similar sys-
tem reserves available on both architectures (Core2Duo and
4412) for higher level autonomous navigation tasks, while
weight was reduced by 96% and power consumption was
reduced by 74% (Table 1).

When running the landing site detection algorithm in
parallel with our pose estimation frame work on the Hum-
mingbird/U2, we achieved a frame rate of 1Hz for landing
map updates. Our experiments showed that this frame rate
is reasonable for fully autonomous landing site detection.

635



Figure 6. Hover performance of the Pelican (left), the Hummingbird with X2 (middle), the Hummingbird with modified U2 (right).

Figure 7. Throw-and-go launch: Acceleration (top) and velocity

(bottom) in x (blue), y (green), and z (red) direction when throwing

the MAV in the air. At the throw, the MAV experiences excitations

of up to 16.5m/s2 and 190◦/s. The velocity rises up to 2.3m/s. The

quick stabilization after about 4s allows for subsequent VSLAM

initialization.

4.2. Experimental Evaluation

To evaluate the influence of the reduced weight on the
control stability of the platform, we executed a position hold
maneuver with all three vehicle/flight computer configura-
tions, where the MAV was controlled only with position es-
timates from our VSLAM pose estimation software (again
executed at a frame rate of 30Hz).

Neglecting the influence of different flight performances
of the two quadrotor systems, the reduced gross weight re-
sulted in significantly better control performance: the hov-
ering ellipse was reduced from ±35cm for the heavy As-
ctec Pelican with Mastermind (RMS(x y z)=[8.3cm 15.8cm
1.5cm]) to about ±15cm for the Hummingbird with the X2
(RMS(x y z)=[5.4cm 5.7cm 1cm]) and to ±7cm for the
Hummingbird with the final stripped down version of the
U2 (RMS(x y z)=[2.9cm 3.0cm 0.8cm]) (Figure 6).

Performance evaluation of our IOF approach showed
that it is sufficiently robust to estimate the vehicle pose even
in drastic motion as it occurs when tossing the MAV in the
air. This and the in-built self-calibrating capability of the fil-
ter framework ensure quick MAV deployment. In Figure 7,
we start our IOF based state estimation at t=38s while hold-
ing the vehicle in hand. The vehicle is tossed in the air at
t=42s. The initial period of 4 seconds is already sufficient
for the states to converge in the pose filter in order to stabi-
lize the MAV after a throw. About 1 second after the throw,
the vehicle stabilizes already in attitude and in velocity. The
convergence of the scene depth requires about 6 seconds

longer. This is due to a non-optimal initialization of the
metric scale factor which generally converges slower than
the other states in the system. Once all states are converged
and the vehicle fully stabilized (after about 7 seconds) the
system is ready to initialize the VSLAM system.

Our autonomous landing experiments consisted of land-
ing site detection, and target approach. All experiments
were conducted with the Asctec Hummingbird carrying the
modified U2 flight computer, and running the pose estima-
tion frame work and landing site detection algorithm in par-
allel. We conducted several indoor experiments were the

Figure 8. Asctec Hummingbird with U2 landing on elevated sur-

face.

Figure 9. Indoor landing experiment: The MAV is commanded

to take off, rise to 1.5m altitude, and autonomously fly towards

the landing platform (trajectory in blue). Once a valid landing

spot is detected, 2 approach waypoints are generated (stars) for

the landing maneuver. The tolerance radius on the first point is

larger than on the landing point to allow high precision landing.

636



landing target consisted of a cardboard box to simulate an
elevated landing surface, such as a rooftop (Figure 8). The
quadrotor was commanded to fly over the elevated surface
by defining manual waypoints, which were approached by
the vehicle autonomously while executing the landing site
detection algorithm to analyze the area beneath the MAV.
As soon as an appropriate landing spot was detected, the
two approach waypoints were submitted and executed by
the vehicle. Figure 9 illustrates the reconstructed 3D point
cloud of the box and ground surface together with the flight
trajectory and the issued approach waypoints. The vehicle
took off to the left of the depicted scene and landed correctly
on top of the box. Example scene views, together with a re-
sulting landing map are illustrated in Figure 3. All pixels
located in the middle of the box have been labeled correctly
as safe to land (blue), whereas pixels close to the edges of
the box are detected as either unsafe (red) or provide not
enough space for landing (orange).

5. Conclusion

This paper introduces the currently smallest micro he-
licopter (∼500g) navigating purely vision based and with
passive sensing only. With the implementation of our pose
estimation frame work on the Exynos 4412 based Odroid-
U2 single board computer, we created an ultra-light weight
flight computer module that provides a MAV platform with
reliable pose estimates in GPS-denied environments at high
frame rate, and executes high-level navigation tasks such as
autonomous landing on an elevated platform. The system
performs continuous self-calibration and is able to be de-
ployed by tossing it into the air, which extends the platform
from a power-on-and-go system to a throw-and-go MAV.

The implementation on an ultra-light weight platform of
only 12g is a huge step towards ultimately having a fully ca-
pable avionics package (flight computer, camera, and IMU)
under 15g. It will enable fully autonomous control of ultra-
small quadrotor systems (as e.g. the 15cm, 25g Bitcraze
miniature quadrotor system [4]) that can be deployed for
indoor and outdoor ISR missions in confined spaces while
maintaining stealth.

References
[1] S. Bosch, S. Lacroix, and F. Caballero. Autonomous detec-

tion of safe landing areas for an uav from monocular images.
In Proc. IEEE/RSJ Intl. Conf. on Intell. Robots and Syst.,
pages 5522–5527, 2006.

[2] R. Brockers, S. Susca, D. Zhu, and L. Matthies. Fully self-
contained vision-aided navigation and landing of a micro air
vehicle independent from external sensor inputs. Proc. SPIE,
8387:83870Q–1 – 83870Q–10, 2012.

[3] Y. Cheng. Real-time surface slope estimation by homogra-
phy alignment for spacecraft safe landing. In Proc. IEEE
Intl. Conf. on Robot. and Autom., pages 2280–2286, 2010.

[4] Crazyflie micro quadrotor: http://www.bitcraze.se/crazyflie/.

[5] S. Goldberg, M. Maimone, and L. Matthies. Stereo vision
and rover navigation software for planetary exploration. In
IEEE Aerospace Conf. Proc., pages 2025–2036, 2002.

[6] J. Kelly and G. S. Sukhatme. Visual-inertial sensor fu-
sion: Localization, mapping and sensor-to-sensor self-
calibration. International Journal of Robotics Research
(IJRR), 30(1):56–79, 2011.

[7] G. Klein and D. Murray. Parallel tracking and mapping for
small ar workspaces. In Proc. Intl. Sym. on Mixed and Aug-
mented Reality, Nara, Japan, Nov. 2007.

[8] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid. A
constant time efficient stereo SLAM system. In Proceedings
of the British Machine Vision Conference (BMVC), 2009.

[9] M. Meingast, C. Geyer, and S. Sastry. Vision based ter-
rain recovery for landing unmanned aerial vehicles. In Proc.
IEEE Conf. on Decis. and Contr., pages 1670–1675, 2004.

[10] J. Montgomery, A. Johnson, S. Roumeliotis, and L. Matthies.
The jet propulsion laboratory autonomous helicopter testbed:
A platform for planetary exploration technology research
and development. J. Field Robot., 23(3-4):245–267, 2006.

[11] A. Mourikis and S. Roumeliotis. A multi-state constraint
kalman filter for vision-aided inertial navigation. In Proc.
IEEE Intl. Conf. on Robot. and Autom., 2007.

[12] R. A. Newcombe, J. S. Lovegrove, and A. J. Davison. Dtam:
Dense tracking and mapping in real-time, 2011.

[13] M. Pizzoli, C. Forster, and D. Scaramuzza. Remode: Proba-
bilistic, monocular dense reconstruction in real time. In Proc.
IEEE Intl. Conf. on Robot. and Autom., 2014.

[14] S. Scherer, L. J. Chamberlain, and S. Singh. Autonomous
landing at unprepared sites by a full-scale helicopter.
Robotics and Autonomous Systems, 2012.

[15] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo recon-
struction algorithms. In Proc. IEEE Intl. Conf. on Comp.
Vis. and Pat. Recogn., pages 519–528, 2006.

[16] S. Shen, N. Michael, and V. Kumar. Autonomous multi-floor
indoor navigation with a computationally constrained MAV.
In Proc. IEEE Intl. Conf. on Robot. and Autom., 2011.

[17] J. Stühmer, S. Gumhold, and D. Cremers. Real-time dense
geometry from a handheld camera. In Proc. 32nd DAGM
Conference on Pattern Recognition, pages 11–20, 2010.

[18] T. Templeton, D. H. Shim, C. Geyer, and S. S. Sastry. Au-
tonomous vision-based landing and terrain mapping using an
MPC-controlled unmanned rotorcraft. In Proc. IEEE Intl.
Conf. on Robot. and Autom., pages 1349–1356, 2007.

[19] S. Weiss, M. W. Achtelik, M. Chli, and R. Siegwart. Versatile
distributed pose estimation and sensor self-calibration for an
autonomous MAV. In Proc. IEEE Intl. Conf. on Robot. and
Autom., 2012.

[20] S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik,
L. Kneip, M. Chli, and R. Siegwart. Monocular vision
for long-term micro aerial vehicle state estimation: A com-
pendium. J. Field Robot., 30(5):803–831, Aug. 2013.

[21] S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Sieg-
wart. Real-time onboard visual-inertial state estimation and
self-calibration of MAVs in unknown environments. In Proc.
IEEE Intl. Conf. on Robot. and Autom., 2012.

[22] S. Weiss, R. Brockers, and L. Matthies. 4dof drift free navi-
gation using inertial cues and optical flow. In Proc. IEEE/RSJ
Intl. Conf. on Intell. Robots and Syst., pages 4180–4186,
2013.

637


