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Abstract

This work revisits the concept of graph cuts as an

efficient optimization technique in image registration.

Previously, due to the computational burden involved, the

use of graph cuts in this context has been mainly limited

to 2D applications. Here we show how combining graph

cuts with supervoxels, resulting in a sparse, yet meaningful

graph-based image representation, can overcome previous

limitations. Additionally, we show that a relaxed graph

representation of the image allows for ‘sliding’ motion

modeling and provides anatomically plausible estimation of

the deformations. This is achieved by using image-guided

filtering of the estimated sparse deformation field. We

evaluate our method on a publicly available CT lung

data set and show that our new approach compares very

favourably with state-of-the-art in continuous and discrete

image registration.

Keywords: graph cuts, discrete optimization, image

registration, supervoxels, image-guided filtering

1. Introduction

Image registration, especially for medical applications,

remains an active and challenging field of research. One

of the most demanding applications of image registra-

tion is lung registration, particularly because of the ‘slid-

ing’ motion between the lungs and surrounding tissues

that makes conventional regularisers unsuited to the task.

Lung registration is important for radiotherapy planning

[19], treatment monitoring [36] and ventilation quantifica-

tion [9]. This paper addresses single-modality intra-patient

lung Computed Tomography (CT) registration, which is es-

pecially important in radiotherapy planning.

Several methods have been proposed and evaluated in

[22]. In general they can be divided into two groups, with

respect to the optimization method: continuous [21] and

discrete [13].

In this paper, we focus on the latter type of optimiza-

tion, which is becoming increasingly popular in medical

image analysis, and present a novel medical image reg-

istration approach that successfully combines graph cuts-

based optimization with supervoxel image representation

and image-guided filtering. Additionally, we propose to ap-

ply the graph cuts method on a relaxed graph formulation,

which helps to preserve lung ‘sliding’ motion at lung bor-

ders, while at the same time ensuring sufficient regulariza-

tion inside and outside of the lungs.

This paper is structured as follows. In the following Sec-

tion 2 we introduce discrete optimization as a platform for

image registration, before presenting the supervoxel image

clustering method. In Section 3 the proposed framework is

discussed in detail, while in Section 4, we show the exper-

imental set-up and results obtained for the proposed frame-

work applied to lung CT image volumes. The results are

discussed in Section 5, where we compare them against re-

sults achieved by the most closely related methods in the

field: bilateral filtering Demons-based [24], dense displace-

ment sampling method [17] and supervoxel-belief propaga-

tion [18]. The paper is summarized in Section 6 and pro-

vides an overview on our future work plans.

2. Background

2.1. Lung image registration

There are a number of remaining challenges in lung reg-

istration which make this an active field of research. One

of them is dealing with ‘sliding’ motion between organs, in

particular on the surface of the lung pleura. In order to ad-
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dress this issue, the deformation field should, in general, be

smooth but local discontinuities should be allowed. Con-

ventional registration methods, providing a smooth defor-

mation field across the whole image, do not model well this

complex issue.

The particular problem has been a topic of interest for

a number of studies. In [28], the authors proposed to de-

couple diffusion regularization into normal and tangential

directions around the lung boundaries using automatically

detected masks. A similar approach was used in [3] for

Positron Emission Tomography (PET) to CT image regis-

tration. A piecewise diffeomorphism, as an extension to

Large Deformation Diffeomorphic Metric Mapping (LD-

DMM), was proposed in [25]. Bilateral filtering as regu-

larization of the deformation field, preserving ‘sliding’ mo-

tion, was proposed in [24]. In [17], Heinrich et al. proposed

a Markov Random Field (MRF) based approach, where,

apart from accurate lung registration, ventilation maps can

be estimated. Recently, a symmetric regularized corre-

spondence fields method was introduced in [15] for images

from patients with Chronic Obstructive Pulmonary Disease

(COPD) and supervoxel-based belief propagation algorithm

in [18].

2.2. MRFs and graph cuts for image registration

Image registration is the process of finding an optimal

transformation between two images. The problem can be

stated as an MRF-based optimization task, where, in con-

trast to continuous optimization methods, only predefined

discrete displacements are allowed. Then the optimization

can be formulated on an undirected graph with a set of

nodes, P , and used to solve a labelling problem, where ev-

ery node p ∈ P must be assigned a label fp from a finite

label set L. Here the labels represent a displacement vector,

which allows the use of MRFs in image registration algo-

rithms. The MRF labelling problem can be formulated as

an optimization process, consisting of data and piecewise

smoothness terms:

E(f) = Edata(f) + κEsmooth(f) (1)

where Edata(f) represents the disagreement between la-

belling f and the observed data, Esmooth(f) is a piecewise

smoothness term and κ is a weighting factor determining

the influence of the smoothness term. In most applications it

is expected that the labels representing displacement vectors

change smoothly across the image. However, in some re-

gions, dramatic changes in the labelling should be allowed.

In the case of lung registration, for example, these changes

are located at the surface of the lungs and rib cage, where

‘sliding’ motion of the lungs occur. Thus, Eq. 1 can be

formulated as:

E(f) = Σp∈P (Dp(fp)) + κΣp,q∈N (Vp,q(fp, fq)) (2)

where Dp(fp) describes N is a subset of P and represents a

direct neighbourhood of the current node, p and Vp,q(fp, fq)
is a potential between each pair of neighbouring nodes, p
and q, penalizing differences between their respective la-

bels, fp and fq , which has the effect of regularizing the

transformation. Such a formulation of an energy function

to be optimized was presented in [12], where the authors

proposed to use linear programming as a solver in image

registration. Belief propagation, with its tree-based simpli-

fied version [11], has been successfully applied to medical

image registration in [17]. The method of graph cuts is an-

other very popular approach to solve a range of optimiza-

tion problems in computer vision. Since its introduction in

[7], the method has been successfully applied to image seg-

mentation [4], stereo matching [5], image restoration and

object classification [6]. As we are estimating the displace-

ment field, the problem can be considered as a segmenta-

tion and solved in efficient way using this method. Graph

cuts were originally proposed as a method to solve a bi-

nary labelling problem. They were further generalised as a

method applicable to multi-label problems by α-expansion

and α − β-swap variants. However, α-expansion can only

be applied when the piecewise smoothness term is a met-

ric. α − β-swap is an iterative optimization method, where

for a randomly chosen pair of labels α and β from L, the

global energy in Eq. 2 is minimized by changing the label

assignment to a node from α to β and vice versa. Such an

operation is called a swap move and solves a binary prob-

lem for every pair of labels.

The method of graph cuts has been proposed as a frame-

work for non-linear medical image registration in [32] and

enhanced by using a landmark-based approach [20], mu-

tual information as a similarity measure [29] or using a

prior joint intensity distribution [30]. In these applications

the piecewise smoothness term was calculated as a dif-

ference between first-order derivatives of the deformation

field. However, the experiments were limited only to 2D

brain and coronary angiogram images, except in [32], where

the method was applied to 3D brain volumes. Furthermore,

the method of graph cuts was applied to 3D medical image

registration in [31] (with the sum of absolute differences

(SAD) as a similarity measure). However, reported long

computation time (up to 25 hours, depending on number of

labels used) has, to-date, limited its wider usage in medical

imaging. This is due to the high complexity of the problem,

which is proportional to the number of voxels and the num-

ber of labels in L. In this work we overcome these compu-

tational limitations by using a sparse image representation

based on the concept of supervoxels.

2.3. Supervoxel image representation

To reduce the dimensionality of the discrete registration

problem, where a displacement vector is calculated for each
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Figure 1. An example of superpixel image representation on a lung

coronal slice from Dir-Lab case 8. The superpixels correspond

well with lung boundaries and airways inside lungs. For illustra-

tive purposes, we use 2D superpixels and present them on a 2D

slice. However, in the framework we extract supervoxels from 3D

volumes.

individual voxel, the parameterization of an image on a reg-

ular grid is a common solution. However, when a regu-

lar grid is applied, it usually does not correspond well with

underlying anatomical structures, and regularization across

their borders could occur. To overcome this limitation, we

follow an approach of supervoxel image clustering, where

an image is over-segmented into smaller regions, based on

spatial and intensity distance. Recently, an image registra-

tion approach with multiple layers of supervoxels with min-

imum spanning tree (MST) message passing algorithm [18]

and adaptive over-segmentation method [23] using super-

voxels in regularization step were proposed. The following

section presents in detail the proposed framework for lung

image registration.

3. Methods

In this section, we present our new framework for lung

registration. We start by introducing the chosen supervoxel

image representation method in Section 3.1, explain graph

cuts as a method for solving MRFs in Section 3.2, provide

details about the used similarity measure in Section 3.3 and

present the image-guided filtering method in Section 3.4.

We finalise by explaining the symmetric formulation of the

framework in Section 3.5.

3.1. SLIC clustering

The proposed framework applies Simple Linear Itera-

tive Clustering (SLIC) [1] as a clustering method, due to its

speed of performance, direct control over the number of ex-

tracted supervoxels and supervoxel compactness. The SLIC

method is designed to extract k approximately equally-sized

supervoxels, where k is the desired number of supervoxels.

It starts by distributing seeds for each of the supervoxels,

initially placed at intervals S = 3

√

M/k voxels apart, with

M being the total number of voxels in the image. The po-

sitions of the centers are then corrected based on the gradi-

ents of the image to avoid locating them on image edges or

at a noisy voxel before each voxel is assigned to the nearest

cluster. In an iterative procedure, the distance between each

voxel x and the closest cluster center c is calculated based

on the Euclidean distance de = ‖x − c‖ and the intensity-

based similarity is dI =
√

(I(x)− I(c))2. The distance Υ
is defined as follows:

Υ =

√

(dc)2 +

(

dI
S

)2

m2, (3)

where m is a parameter corresponding to compactness of

supervoxels.

Using such a formulation, we can extract supervoxels

from the images. An example of such an over-segmentation

on one of the lung images is illustrated in Figure 1.

3.2. Graph cuts

Our optimization problem is posed on an undirected

graph, defined by the adjacency of previously extracted su-

pervoxels. Every pair of directly neighbouring supervoxels

is connected by an edge. Values of the edges are calculated

based on the absolute difference between mean intensities

of the supervoxels. In our approach we propose to use a

relaxed form of the graph, assuming that in the previously

formulated graph, the edges with high value connect inho-

mogeneous structures and can thus be removed, based on

a relaxation threshold parameter υ. Such a formulation ad-

ditionally encourages discontinuities to appear at the lung

boundaries, while at the same time preserving the continu-

ous deformation field inside them.

Our formulation builds on graph-based regularization

[23] and shares some aspects of the minimum spanning tree

(MST)-based belief propagation proposed in [17]. This ap-

proach has the advantage of eliminating only edges that

connect supervoxels from inconsistent regions, while pre-

serving all connections inside homogeneous structures. The

proposed formulation should result in more physically plau-

sible regularization inside the lungs and, in turn, a more re-

alistic deformation field. The introduced relaxation of the

graph can be considered as a form of pre-segmentation of

the image, akin to lung masking, which is common practice

[25, 27, 34].
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The data cost term is formulated as a mean error cal-

culated for all voxels x in the fixed Ifix and moving Imov

images clustered in a certain supervoxel represented by a

node p, for the applied displacement fp:

Edata(f) = Σp(|Ifix(xp)− Imov(xp + fp)|), (4)

The piecewise smoothness term can take one of a number of

forms. In the simplest Potts model, the term takes the value

1 when labels are equal and 0 otherwise. In a linear model,

the smoothness term value changes linearly according to the

distance between labels. The most common way of formu-

lating regularization in image registration is by a quadratic

model, which depends on the squared difference between

label distances. The first two formulations of the piecewise

smoothness term satisfy all metric requirements, including

the triangle inequality. In our formulation, we propose to

use the following piecewise smoothness term:

Esmooth(f) = Σp,q∈N

‖fp − fq‖
2

‖Imov(xp)− Imov(xq)‖
, (5)

where the denominator represents the edge values of the

graph.

On such formulated problem we apply the graph cuts

method [7]. Due to the fact that we are using a quadratic

regularization term, which does not satisfy a a metric con-

dition about the triangle inequality, we use α−β-swap vari-

ant of the graph cuts method, which has relaxed require-

ments about piecewise smoothness term properties and can

be used with a semi-metric piecewise smoothness term.

3.3. Similarity measure

The most commonly used similarity measures, based

purely on differences between intensities of corresponding

voxels, such as sum of absolute differences (SAD) or sum

of squared differences (SSD), have their well-known limi-

tations when applied to lung registration. Due to changes

in lung tissue density during breathing, the corresponding

regions of the lungs at different breathing phases can vary

in intensity. To address this issue, we use the modality in-

dependent descriptor (MIND) [16] as a similarity measure,

which has been originally developed for lung registration.

This descriptor calculates for every voxel a vector describ-

ing how similar that voxel is to its neighbours. The main

advantage of MIND is that it provides a descriptor which is

sensitive to similarities in gradients and texture, and much

less susceptible to differences in intensities. Thus, the data

term from Eq. 4 calculates the mean absolute difference

between descriptors and takes the form:

Edata(f) = Σp(|MIND(Ifix)− MIND(Imov(fp)|), (6)

where MIND(Ifix) and MIND(Ifix(fp)) are respectively

the descriptors calculated for the fixed image and the mov-

ing image after applying the displacements represented by

labelling f .

3.4. Image­guided filtering

A direct application of the estimated sparse displace-

ment field on a parameterized image would result in dis-

continuous and physiologically implausible deformations.

To overcome this limitation, in [18] the authors proposed

using multiple layers of supervoxels while in [12, 17] free-

form deformation (FFD) with B-splines [26] is used as an

interpolation method. However, the properties of B-splines

do not allow us to model discontinuities of the deforma-

tion field, which occur between the lungs, rib cage and di-

aphragm.

We apply an alternative solution: image-guided filtering

[14], where an output image Iout is a linear combination of

an input image Iin and an image used as a guide, Ig:

Iout(x) = Σy∈N (x)Wy(Ig)Iin(y), (7)

where Wy is a filter kernel calculated for the guide image

Ig in a neighbourhood N (x) of a voxel x. The kernel Wy is

defined as:

Wy(Ig) = 1+ (Ig −µIg )
T (Ig −µIg )(covIg +σI)−1, (8)

where µIg , covIg are the mean and covariance of the guid-

ance image Ig calculated in a neighbourhood N (x), I is

the identity matrix and σ is the smoothness parameter. In

our method, this filter is applied over the sparse displace-

ment field T using the moving image Imov as a guide. This

yields smooth deformations across anatomically consistent

regions in the moving image, while at the same time pre-

serves discontinuities in the deformation field at the region

boundaries. The idea of image-guided filtering is based

on the edge-preserving approach, similar to bilateral filter-

ing [33], which discourages smoothing across boundaries.

Both methods, bilateral filtering and image-guided filtering

have good edge-preserving smoothing properties. The main

benefit of image-guided filtering is that it is several times

faster than bilateral filtering. Related approaches that were

previously proposed include continuous optimization-based

registration in the lungs [24], where bilateral filtering was

applied, and liver motion compensation [23] with image-

guided filtering.

3.5. Symmetric formulation

A symmetric formulation of image registration [2] is ap-

plied to include more information about the complex nature

of the lungs during breathing. At each resolution level, two

deformation fields are calculated: from the moving image to

the target and vice versa. This is advantageous as the choice

of the target and source image does not bias the results of

the registration. Additionally, the symmetric formulation

partly compensates for discontinuities in the estimated de-

formation field originating from the relaxed graph formu-

lation. After performing an optimization at each resolution
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Error in [mm] and standard deviation

Case Initial Proposed BLF [24] deeds [17] SBP [18]

c1 3.89 ± 2.8 1.00±0.5 1.05 ± 0.5 0.97 ± 0.5 1.19 ± 0.6

c2 4.34 ± 3.9 0.96±0.5 1.08 ± 0.6 0.96 ± 0.5 1.01 ± 0.6

c3 6.94 ± 4.0 1.13±0.6 1.49 ± 0.9 1.21 ± 0.7 1.20 ± 0.6

c4 9.83 ± 4.8 1.39±0.9 1.90 ± 1.3 1.39 ± 1.0 1.36 ± 0.9

c5 7.48 ± 5.5 1.36±1.3 1.99 ± 1.7 1.72 ± 1.6 1.42 ± 1.3

c6 10.9 ± 6.9 1.16±0.6 2.36 ± 1.9 1.49 ± 1.0 1.22 ± 0.7

c7 11.0 ± 7.4 1.17±0.7 2.32 ± 1.9 1.58 ± 1.2 1.27 ± 0.7

c8 15.0 ± 9.0 1.29±1.2 3.58 ± 3.4 2.11 ± 2.4 1.26 ± 0.9

c9 7.92 ± 3.9 1.20±0.6 1.74 ± 1.0 1.36 ± 0.7 1.20 ± 0.7

c10 7.3 ± 6.3 1.19±0.8 2.02 ± 2.1 1.55 ± 1.6 1.23 ± 0.8

Mean 8.46 ± 5.4 1.18±0.8 1.95 ± 0.7 1.43 ± 1.3 1.23 ± 0.8

Table 1. Comparison of the proposed method with the closest implementations based on mean TRE and standard deviations for Dir-Lab

data set. For each case, the TRE (stdev) before registration (Initial) and after registration are shown: our proposed method, after bilateral-

filtering combined with Demons (BLF [24]), after the dense displacement sampling method based on belief propagation on a minimum

spanning tree (deeds [17]), and after supervoxel-based belief propagation (SBP [18]). Best results are shown in bold. Mean results show

that our proposed method outperforms all of the compared methods in average.

Figure 2. Distribution of the landmark error for the most challenging case 8 after registration in all three views with the lung mask in the

background. Only landmarks with error higher than 1.2mm are displayed. The size of the points corresponds with the landmark error. It

can be noticed that the biggest errors (pointed by arrows in red) occur in the bottom corner of the lungs - A (16.3mm), which correspond to

an artefact shown in Figure 3, and close to the lung borders - B (10.7mm), which imply that ‘sliding’ motion in this region is not sufficient.

level, inverse transformations of both previously calculated

transformations are approximated based on a simple fixed-

point approach originally proposed in [10] and combined

with the corresponding forward transformations.

Tnew
f→m = (Tf→m + T−1

m→f ) · (0.5), (9)

Tnew
m→f = (Tm→f + T−1

f→m) · (0.5), (10)

where Tm→f and Tf→m stand for transformations from

Imov to Ifix and from Ifix to Imov respectively.

4. Experiments and Results

The proposed framework was evaluated on the publicly

available Dir-Lab dataset [8], which consists of 10 cases of

4D CT lung data with spatial resolution varying between

0.97×0.97×2.5 and 1.16×1.16×2.5 mm3. For each indi-

vidual case, 300 manually placed landmarks in full inhale

and full exhale images were provided.

In the conducted experiments we used 5 resolution lev-

els with different numbers of voxels assigned to each su-

pervoxel: 100, 150, 400, 700, 400. The maximum al-

lowed displacement was M = {3, 3.5, 3.75, 4, 2} vox-

els and displacements were discretized at intervals of size

d = {0.5, 0.5, 0.75, 1, 0.5} voxels respectively. The

image-guided filter window was defined as w = [5 5 5] and

the smoothness parameter σ was set to 0.001. The graph

relaxation threshold parameter υ was empirically chosen as
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Figure 3. Registration results for the proposed method for the most challenging Dir-Lab case 8 in axial, coronal and sagittal view. In the

upper row an overlay of full inhale (green) and full exhale (magenta) is presented. In the middle row the same slices after performing the

proposed registration are shown. The initial misalignment, visible in the upper row as shadows in green and magenta, is almost completely

eliminated after the registration. In the bottom row the magnitude of the displacement field in mm is presented, with well visible ‘sliding’

motion in all views pointed at by red arrows. The black arrow points at clear change in the magnitude of the displacement, which displays

good correspondence with anatomical border between lung lobes.

0.85. To calculate the MIND descriptor, six neighbouring

voxels were used. The graph cuts optimization was per-

formed until convergence.

In Table 1 we show the results for applying our tech-

nique to the Dir-Lab dataset, in comparison to the most

closely related continuous optimization-based Demons reg-

istration method using bilateral filtering (BLF [24]), as

well as two other state-of-the-art methods using discrete

optimization-based registration: MST-based belief propa-

gation (deeds [17]) and supervoxel-based belief propagation

(SBP [18]). We used the Target Registration Error (TRE) to

quantify the accuracy of the registration methods. The pro-

posed method achieves an average TRE of 1.18±0.8mm,

whereas the mean TRE for Demons-based bilateral filtering

is 1.95±0.7mm. Applying the two discrete optimization-

based methods, deeds and supervoxel-based belief prop-
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agation, resulted in mean TREs of 1.43±1.3mm and

1.23±0.8mm, respectively.

The visualization of the errors distribution for case 8, the

most challenging, is shown in Figure 2, with the visual reg-

istration result shown in Figure 3. Red arrows point to visi-

ble preservation of ‘sliding’ motion at the lung boundaries.

Some artefacts can be noticed at the lowest regions of the

lungs, as can the misalignment in the coronal view, marked

by the blue arrow. Quite interesting is the clearly visible

change in the magnitude of the displacement field marked

by the black arrow in the coronal view. The change corre-

sponds to a fissure between lung lobes.

5. Discussion

The presented results for our method show that, even

though for each of the supervoxels a discrete displacement

vector is assigned, the application of image-guided filter-

ing is capable of providing a locally continuous deforma-

tion field, at the same time preserving ‘sliding’ motions. In

terms of accuracy, our method outperforms both continu-

ous and discrete optimization-based counterparts. However,

in our formulation we used MIND as a similarity measure,

whereas in BLF [24] normalised gradient fields were ap-

plied, which could affect comparisons. Graph relaxation,

which can be considered as partial segmentation, also could

have a strong influence on the results. The proposed method

slightly outperformed supervoxel-based belief propagation

(SBP) [18], where multiple layers of supervoxels were used.

Of the compared registration methods, the supervoxel-

based methods: the proposed and SBP show noticeable im-

provement over continuous Demons-based method and the

regular grid discrete optimization-based (deeds). Neverthe-

less, the artefacts observed for our method that are high-

lighted in Figure 3, which could be caused by the graph re-

laxation, require further investigation. Additionally, in the

proposed framework the number of voxels within a single

supervoxel at the second highest resolution level is rela-

tively high, in comparison to other levels, and we predict

that clustering the image into smaller subsets could further

improve the results. This problem is partially compensated

at the highest resolution level at the expense of the region

search size. In comparison to the voxel-based graph cuts

method, the proposed formulation based on supervoxels al-

lows for a much less complex problem to be solved.

6. Conclusions

In this paper, we have shown that graph cuts-based regis-

tration can be successfully applied to lung registration. The

reduction in the complexity of the optimization problem by

using a supervoxel image representation not only enables

the method to run in reasonable time (our sub-optimal Mat-

lab implementation takes about an hour per volume) but

also, when combined with a relaxed graph representation

and image-guided filtering, helps to preserve lung ‘sliding’

motion and improve modeling of complex lung breathing

motions. Moreover, the results after applying the proposed

method on the Dir-Lab dataset suggest that our framework

using graph cuts on a relaxed graphs performs favourably

in comparison to state-of-the-art methods, even slightly out-

performing in average the best of them in the terms of over-

all accuracy - supervoxel-belief propagation method [18].

A more detailed analysis, including testing different sim-

ilarity measures and more data sets as well as multi-modal

data, is needed. An additional comparison between bilateral

filtering and guided image filtering applied to our formula-

tion would give a more detailed view in the performance of

the both method. Instead of a fixed threshold in a graph re-

laxation step, a sigmoid function could be used and we plan

to evaluate such a potential solution. Nevertheless, substi-

tuting continuous optimization with its discrete-based coun-

terpart in the proposed image-guided filtering approach is

an attractive and computationally tractable improvement.
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