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Abstract

One of the basic components of diffeomorphic image reg-

istration algorithms based on velocity fields is the numeri-

cal method used to integrate velocity parameters and obtain

spatial transformations as displacement fields. When the in-

put velocity field does not depend on the time parameter, the

solution is often referred to as the Lie exponential of the ve-

locity field. In this work, we present an integration method

for its numerical computation based both on a generaliza-

tion of the scaling and squaring algorithm and on a class

of numerical integrators aimed to solve systems of ordinary

differential equations called exponential integrators. This

new method led to the introduction of three numerical in-

tegrators, and the subsequent validation are performed on

synthetic deformations and real medical images.

1. Introduction

Diffeomorphisms in medical image registration:

There are multiple medical applications where it is inter-

esting to combine and compare information obtained from

different patients’ images: in longitudinal studies, when a

temporal sequence of medical images of the same subject

is studied, in cross-sectional studies, when images are com-

pared across subjects, and when images are acquired us-

ing different modalities [22]. In brain imaging, for exam-

ple, registration techniques are widely used to correct the

subject motion and, in longitudinal scans, to help in com-

paring and analysing anatomical differences. In the practi-

cal implementations of image registration algorithms, one

of the crucial choice is the set of constraints that reflects

the geometrical properties that are expected to remain un-

changed between scans. A reasonable choice for the set of

spatial transformations modelling continuous deformations

between images, is the group of diffeomorphisms.

Parametrisation of diffeomorphisms: Two main prob-

lems do arise in the practical implementation of diffeomor-

phic image registration frameworks: their parametrization

and the statistical analysis [13]. A sensible choice to par-

tially solve these technical issues is to parametrize each dif-

feomorphism with its tangent vector field, that makes them

easier to be manipulated, and where the computation of

statistics is simplified. Two possible options are available

according to the dependence of the vector field on the time

parameter.

From time-varying to stationary velocity fields: While

theoretically the parametrisation in the tangent space par-

tially solves the above mentioned problems, difficulties

emerges in its computation. An analytic (or exact) solu-

tion of the differential equation system that provides the re-

lated geometrical transformation of the vector field, is al-

most never available. To approximate it, it is necessarily

to rely on numerical schemes, called integrators, such as

the widely used Euler method or Runge Kutta 4 [7]. These

methods are applied in medical imaging both when deal-

ing with vector fields that are time-dependent (time-varying

velocity field or TVVF) or time-independent (called sta-

tionary velocity fields or SVF). TVVFs appear in diffeo-

morphic image registration as a parametrization model of

the deformations, where the geodesic motion on the dif-

feomorphism group is defined by the Euler-Poincaré equa-

tions [5, 20]. Authors of [3] have indicated that restrict-

ing the parametrization to the SVF, allows to use an al-

gorithm called (classical) scaling and squaring, that is in

general faster than the previously proposed methods. In

[24], a similar algorithm is developed for non-linear station-

ary ordinary differential equations applied to wave propaga-

tion alongside a rigorously error analysis. A comparison of

some of the methods to exponentiate an SVF has been per-

formed in [6], while SVF-based diffeomorphic image regis-

tration has found successful applications [23, 15, 17, 21, 4].
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Contributions: This paper is concerned with the numer-

ical computation of the integrator of SVF, also called Lie

exponential. Its main contribution is the introduction of

a methodological approach based on a combination of the

generalised scaling and squaring proposed in [2] and on the

exponential integrators, developed in the numerical analysis

community, and presented in [12].

Paper organization: In the next section we introduce the

relevant theory leading to three numerical integrator al-

gorithms, while formalizing the problem and introducing

some of the available schemes in the state of the art. In

section 3, we present the five datasets used for numerical

experiments, and in section 4 we provide the results of the

new numerical scheme compared with other algorithms.

2. Numerical computations of the exponential

of a Stationary Velocity Field

Stationary and time-varying velocity field: We indicate

by Ω ⊂ Rd the image’s domain (d = 2, 3 for bi- and tri-

dimensional images), by φ : Ω→ Ω a diffeomorphic spatial

transformation and by u : Ω → Rd a stationary velocity

field (or tangent vector field).

A diffeomorphism can be obtained from a velocity field

u through a first order ordinary differential equation system

(ODE) of the same dimension of Ω:

dφt

dt
= u(φt), φ0 = Id . (1)

whose solution at t = 1 is indicated with φ = φ1. The

set of diffeomorphisms continuously parametrized by a

time-parameter t, indicated by {φt}t∈R satisfies the one-

parameter subgroup properties: φ0 corresponds to the iden-

tity and φt ◦ φs = φt+s ([14], p. 102). When the velocity

vector field is time-dependent, the vector field u = u(t, φt),
it is called time-varying velocity field (TVVF), and the pre-

vious ODE becomes dφt

dt = u(t, φt).

We introduce two examples that will be of particular in-

terest for our purpose: the affine ODE system, in particular

when defined over elements of the Lie algebra of rigid body

transformations of the d-dimensional real space (special Eu-

clidean group SE(d)), and the non-linear ODE system de-

fined by an element of the projective general linear alge-

bra, whose Lie exponentials are the homographies of Rd.

In both cases an analytic solution of the Lie exponential is

available and therefore there is a ground truth to validate the

numerical methods.

Linear and Affine ODE: When the ODE is consid-

ered from a given point x in Ω, the transformed point

parametrized at the time t, given by φt(x) is denoted with

x(t) and its time derivative with ẋ(t). Using this notation,

when u is linear, equation (1) becomes ẋ(t) = Lx(t), for

a d × d square matrix L and x(0) = x0 initial condition.

The solution of this linear case uses the matrix exponen-

tial: at time t it is provided by x(t) = ϕ0(tL)x0 where

ϕ0(tL) =
∑

∞

j=0(tL)
j/j! is the matrix exponential func-

tion. When the ODE is affine, ẋ(t) = Lx(t)+r, and the ini-

tial condition is x(0) = 0, then its analytic solution is given

by x(t) = tϕ1(tL)r, where ϕ1(tL) is the shifted Taylor ex-

pansion of the exponential given by
∑

∞

j=0(tL)
j/(j + 1)!

([11] p. 10). In case the initial condition is not cen-

tred in the origin, is it possible to translate the coordinate

frame by y(t) := x(t) − x(0), so that y(0) = 0 and

x(t) = y(t) + x(0). The affine ODE can be written as

[
ẏ(t)
0

]
=

[
L r+ Lx(0)
0 0

] [
y(t)
1

]
, (2)

with initial condition [y(0) 1]T = [0 1]T . Its analytic so-

lution is given by

[
y(t)
1

]
= ϕ0

([
L r+ Lx(0)
0 0

])[
0

1

]
. (3)

while using ϕ1, and in Euclidean coordinates, is

x(t) = x(0) + tϕ1(tL)(r+ Lx(0)) . (4)

The numerical computation of ϕ0 and ϕ1 is an open field of

research, and a comparison of the commonly used methods

can be found in [18]. There are several numerical methods

available to approximate ϕ0(A)X0 or ϕ1(A)r , not involv-

ing any direct computation of ϕ0. However, their efficiency

over a simple truncation of ϕ0 appears only when large ma-

trices are involved ([8, 1, 19]).

Homography group: The affine case can be extended in

homogeneous coordinates to the homography group. This

second example will provide a class of polynomial ODE,

where an analytic solution is still available as the quotient

of the exponential of the linear matrix in projective coor-

dinates. Indicating with X(t) the (d+ 1)-dimensional vec-

tor x(t) in projective coordinates, where all the components

depends on time, and with H an element of the projective

general linear algebra pgl(d) ((d + 1) × (d + 1) matrices

defined up to a constant), a linear ODE in homogeneous

coordinates can be written as Ẋ(t) = HX(t). The deriva-

tive of the Euclidean coordinates xi(t) = Xi(t)/Xd+1(t),
is given by the quotient rule

ẋi(t) =
Ẋi(t)Xd+1(t)−Xi(t)Ẋd+1(t)

Xd+1(t)2
i = 1, . . . , d .

(5)

For Xd+1(t) = 1 and Xi(t) = xi(t), the ODE can be writ-

ten, as the non-linear system

ẋi(t) = H(i,:) · [x(t) 1]T − xi(t)
(
H(d+1,:) · [x(t) 1]T

)

(6)
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Figure 1. Scaling and composing scheme, as a generalization of the scaling and squaring. Given a stationary velocity field u, this is first

scaled by a factor of N , then an appropriate numerical integrator is applied to the scaled u, and its result, indicated with ẽxp(u/N),
is iteratively composed by itself N -times. When ẽxp(u/N) is computed as Id + u/N and the iterative composition is computed by

composition of the previous step with itself, then the algorithm is the classical scaling and squaring proposed in [3]. When the iterative

composition is performed sequentially backward, it is equivalent to the Euler method ([7] chapter 5).

where H(i,;) is the i-th row of H . The analytic solution

of the previous non-linear ODE in Euclidean coordinates

can be recovered from the solution in homogeneous co-

ordinates S(t) = ϕ0(tH)X(0), for the initial condition

X(0) = [x(0) 1]T , as S1:d(t)/Sd+1(t).
Numerical integrators: Any numerical method whose aim

is to approximate the solution of equation (1) is called nu-

merical integrator. For the general case, the flow of diffeo-

morphism φt that solves equation (1), called Lie exponential

of the velocity field u and is indicated with exp(tu) ([14],

ch. 5), does not have an analytical solution. To address

this limitation several integrators have been proposed in the

literature to compute a numerical approximation of the Lie

exponential (for example in [7]). Their improvement in ac-

curacy, stability and computational time is an open field of

research: authors of [6] presented a comparison of different

numerical approaches for the integration of SVFs.

Particularly relevant to our purposes are the scaling and

squaring and the Euler method ([3] and [24] where proofs

and bounds on the accuracy of these methods are derived).

Generalized scaling and squaring: The most commonly

used numerical methods to integrate a vector field are based

on the discretization of the time parameter and on the Tay-

lor expansion of the unknown solution (as for example Eu-

ler, Euler modified, Midpoint and Runge Kutta 4). When

dealing with SVFs, the one-parameter subgroup property

of the vector field φt = exp(tu) and its direct implication

exp(u/N)N = exp(u) ([14], p. 204) is at the core of the

generalized scaling and squaring numerical methods. Indi-

cating with ẽxp the Lie exponential approximant (any ap-

propriate numerical integrator of the Lie exponential) that

deals with small SVFs, and denoting u/N with v, it fol-

lows

φ1 = exp(u) =
(
exp(u/N)

)N
≃
(
ẽxp(v)

)N
. (7)

After the scaling of u and the computation of ẽxp, the

result is iteratively composed in order to obtain the so-

lution in the original scale. The final iterative composi-

tion can be performed in 3 ways, called forward compo-

sition, backward composition or, when N = 2M , squared

composition (in [6] respectively forward Euler, composition

method, and scaling and squaring). At the k-th step, the

computation can be performed as ẽxp(v)k+1 = ẽxp(v) ◦

ẽxp(v)k, ẽxp(v)k+1 = ẽxp(v)k ◦ ẽxp(v) or ẽxp(v)2
k+1

=

ẽxp(v)2
k

◦ ẽxp(v)2
k

. Even if mathematically equivalent,

the squared composition is computationally faster. Authors

of [2] proposed to compute ẽxp(v) with a generic adequate

exponential integrator, as for example the Runge-Kutta 4

method (figure 1).

Exponential integrators: Another class of numerical in-

tegrators was introduced in 1958 to solve some particular

stiff ODEs for which the numerical integrators based on

the Taylor expansion have not provided reasonable results

[12]. Called exponential integrators, they originates from

the strategy of separating the linear part and the non-linear

part of the tangent vector field. In this paper we exploit this

approach, combined with the generalized scaling and squar-

ing to produce a new numerical integrator method.

Combining generalized scaling and squaring and expo-

nential integrators: The scaling step, as the first step of the

scaling and squaring algorithm, appears to be particularly

convenient when dealing with large deformations between

images. Once the SVF is reduced in scale, it is possible to

integrate it, separating the linear from the non-linear part,

following the exponential integrator methodology. After

scaling u to v = u/N and changing the coordinate frame

to have the initial condition centred in the origin, equation

(1) becomes ẏ(t) = v(y(t) + x(0)). Separating the linear

from the non-linear part with the Taylor series expansion of

v around x(0) in x(t), the ODE becomes:

ẏ(t) = v(y(t) + x(0)) = v0 + Jv0
y(t) +Nv(y(t)), (8)

where v(x(0)) is written as v0 for brevity and Jv0
is the

Jacobian matrix. The term Nv is a non-linear operator ob-

tained subtracting the linear part of the the SVF computed

with the Taylor expansion of v in x(t) around x(0):

Nv(y(t)) = v(y(t) + x(0))−
(
v0 + Jv0

y(t)
)
. (9)

It follows that Nv(y(0)) = 0 and Nv(y(t)) ∈ O
(
y(t)2

)

for x(t)→ x(0), or equivalently t→ 0.

Considering only the linear part, it is possible to ap-

ply ϕ0, as proposed in equation (3), obtaining the solution

x(t) as the product of the matrix ϕ0(t[Jv0
,v0; 0, 0]) times
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(a) (b) (c) (d)

Figure 2. Visual description of the data set used in the experiments. (a) Axial section of a velocity field generated by element of the rigid

body transformation of the space with rotation randomly chosen in the interval (−π

8
, π

8
) and with the centre randomly selected in the

field of view. An analytic solution of the ODE is available for any choice of rotation and translation. (b) Axial section of a velocity field

generated by an homography H scaled according to the dimension of the image, such that its matrix Logarithm has real entries and the

last row of H multiplied by its column is positive. For this dataset an analytic solution is available. (c) Axial section of an SVF with

values randomly generated from a normal distribution with σinit = 5 and smoothed with a Gaussian filter of σgf = 2. A wide number of

samples of any dimension can be quickly generated, but there is no analytic solution available. (d) SFV obtained from the registration of

two longitudinal weighted MR brain images from MIRIAD dataset.

[0, 1]T . Since this choice is computationally expensive the

function ϕ1, as proposed in equation (4), provides a sec-

ond option that reduces the computational time. With this

choice, we obtain: x(t) = x(0)+tϕ1(tJv0
)v0 . When deal-

ing with sufficiently small time-step, the Jacobian is close

to the identity and an additional term proportional to J2
v0

did not provide any sensible improvement in the numerical

results. For this reason ϕ1 can be truncated at its second

order:

x(t) = x+ tv0 +
t2

2
Jv0

v0 +O
(
t3J2

v0
v0

)
. (10)

In conclusion, an approximation of the solution of the lin-

earised equation (1), after the scaling step, can be written

as

ẽxp(tv)(x) := x+ tv0 +
t2Jv0

v0

2
, (11)

with asympthotic error O
(
y(t)2 + t3J2

v0
v0

)
, t → 0 that

arises from the truncation of ϕ1 and from the error intro-

duced when neglecting the non-linear part.

According to the choice of the exponential approximant

ẽxp, to the truncation of ϕ1 and to the iterative composition

(ϕ1/N )N , the method proposed can be implemented with

three possible algorithms:

1. Scaling and squaring based on exponential integrators

(ss ei): ẽxp is computed approximating the exponen-

tial of the matrix [Jv0
,v0; 0, 0] (equation (3)) and the

composition is computed by squaring.

2. Scaling and squaring based on approximated exponen-

tial integrators (ss aei): ẽxp is computed by truncat-

ing ϕ1 (equation (11), with t = 1) and the composition

is computed by squaring.

3. Scaling and composing based on approximated expo-

nential integrators (euler aei) ẽxp is computed by

truncating ϕ1 (equation (11), with t = 1) and the com-

position is computed with forward integrations.

The remaining part of this paper is devoted to the validation

and the comparison of these algorithms with the state of the

art.

3. Dataset Descriptions

Synthetic dataset 1: The first dataset consists of 50 linear

velocity fields sampled on a regular grid of size 60×60×60
generated by elements of the Lie algebra se(3) of the rigid

body transformations of the d dimensional space ([14], p.

191, 214). Rotations are randomly chosen in the interval

(−π
8 ,

π
8 ) and with the centre randomly selected in the field

of view. Studying these linear ODEs is particularly relevant:

a closed form of the analytic solution φ = exp(v) is avail-

able, therefore results obtained from numerical integrators

can be compared with a ground truth.

Synthetic dataset 2: The SVFs belonging to the second

dataset consists of 50 SVFs sampled on a regular grid of

size 60 × 60 × 60 and generated by homographies in the

projective linear group introduced in section 2. Each ho-

mography H is a (d+1)×(d+1) random matrix whose el-

ements are sampled from a Gaussian distribution with stan-

dard deviation 1 and scaled by a factor of 60. To avoid

foldings, degenerate cases and to avoid the exponential ma-

trix to have complex entries, two additional constraints are

added: the matrix logarithm of H must have real entries

and each row of H when multiplied by any of its columns

always provides a positive number. Despite the fact that the

corresponding ODE is non-linear, the analytic solution of

the Lie exponential is available.
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Synthetic dataset 3: In the third dataset, 50 stationary

velocity fields are directly generated on a grid of size

60 × 60 × 60 as random values from a normal distribution

with σinit = 5 and smoothed with a Gaussian filter with

σgf = 2. Since the Lie exponential does not have any ana-

lytic solution, a numerical benchmark is chosen among the

results of the implemented numerical integration methods.

Real cases data 1: This dataset consists of 10 SVFs from

longitudinal registrations performed with the last version of

NiftyReg (with default parameters) [17] of T1 MRI images

collected from the MIRIAD dataset [16].

Real cases data 2: To compare the classical scaling and

squaring with the approximated exponential integrators,

a segmentation propagation is performed 35 scans a

manually segmented, as provided by Neuromorphometrics

for the MICCAI 2012 Grand Challenge on Label Fusion

https://masi.vuse.vanderbilt.edu/workshop2012/index.php

/Challenge Details. The pairwise registrations of the 35
selected images resulted in 1190 propagated segmentations

for each considered algorithm.

Registrations are performed using NiftyReg and the ac-

curacy is measured as the pixelwise sum of the squared

relative difference between the analytic solution (when

available) or the chosen numerical benchmark. The com-

putational time is measured on a Mac book pro 2014

16Gb 1600 MHz DDR3. The python code implemented

to produce the images and elaborate the data is publicly

available on the authors’ repository https://github.com/gift-

surg/lie exponential.

4. Experiments and Validations

This section presents the results obtained with the three

proposed algorithms. Their performance are compared with

other numerical integrators available in the literature.

4.1. Accuracy and computational time comparison

Figure 3 shows the outcome of an experiment performed

with the synthetic dataset 2 described in section 3. The

mean errors are computed as the Euclidean norm of the

difference of the displacement fields obtained from the nu-

merical computation of the Lie exponential with different

algorithms.

Figure 4 shows the same analysis for four datasets and

for a choice of significant numerical methods. In (a), the

sampled SVFs belong to the synthetic dataset 1: we observe

that for all the methods that are not based on the exponen-

tial integrators, increasing the number of steps induces a

decrease in the error. Since they provide exact solutions

for the linear part of the SVFs, the methods ss ei, ss aei

and euler aei are more accurate at the first or second step

for this particular case of linear ODEs. Resampling error is

however accumulated with each additional step. In (c) SVFs
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Figure 3. The three numerical methods to approximate Lie

exponential proposed (scaling and squaring based on exponen-

tial integrators ss ei, scaling and squaring based on approxi-

mated exponential integrators ss aei and scaling and compos-

ing based on approximated exponential integrators euler aei) are

compared in error and computational time for a different number

of steps, with the classical scaling and squaring (ss), the midpoint

method (midpoint), the Euler method (euler), the Euler modified

method (euler mod), the Heun method (heun), the Heun modi-

fied method (heun mod) and the explicit Runge-Kutta 4 method

(rk4), described in [3, 7]. The additional method ss rk4 com-

bines the scaling and squaring framework and compute ẽxp with

rk4. The number of steps for each method is selected in the list

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30] to a dataset of 50, sam-

pled on a regular grid of size 60 × 60 × 60 and generated by ho-

mographies. The error is computed as the mean of the voxelwise

normalized Euclidean norm of the difference between the defor-

mation obtained with the numerical algorithm and the available

analytic solution.

belong to the synthetic dataset 3 (non-linear random gener-

ated and smoothed with a Gaussian filter) and in (d) SVFs

are from real patients’ images, belonging to the real cases 1

dataset. In (b), the same non-linear dataset showed in figure

3 and generated by homographies, is proposed again, to em-

phasise the differences between the four datasets described

in figure 2. The classical scaling and squaring is, in each

case, more accurate than the Euler method, while it is sys-

tematically outperformed by the scaling and squaring based

on approximated exponential integrators (ss aei). When

SVFs are sampled from the synthetic dataset 3 and real case

1 (figure 4 (c) and (d)), the Runge Kutta 4 with fixed number

of steps equals to 7, is used as numerical benchmark, having
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Figure 4. Computational time and errors are compared as in figure 3 for each of the datasets presented in figure 2. The meth-

ods selected are the classical scaling and squaring (ss), the generalized scaling and squaring with approximated exponential integra-

tors (ss aei), with exponential integrators (ss ei), the scaling and squaring based on Runghe-Kutta 4 (ss rk4), the Euler method

(euler) and the Euler method based approximated exponential integrators (euler aei). The number of steps are selected in the list

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30] for figure (a), (b), (c), and with the two additional steps [35, 40] for figure (d). Three dataset

of 50 SVFs generated with elements in the Euclidean group SE(3) (a), with homographies (b) and using Gaussian filters (c), are sampled

on a regular grid of size 60 × 60 × 60. In (d) the selected dataset consists of 10 SFV obtained registering two longitudinal weighted MR

brain images. When the ground truth is not available (c, d) , the selected numerical benchmark is the Runge Kutta 4 method computed with

7 steps, since it provided the lowest error in the exponentiating SVFs generated by homographies (see figure 3) the computational time of

the benchmark is in the order of 101 seconds for the synthetic generated SVFs (c), and in the order of 102 seconds for the real patients

images (d).

had the best performance non-linear SVFs showed in figure

3, when a ground truth was available. The optimal accuracy

performance of the generalized scaling and squaring with

Runge-Kutta 4 is a consequence of the similarity between

this method and the chosen numerical benchmark; the in-

crease in accuracy of the scaling and composing based on

approximated exponential integrators (euler aei) is biased

as well by this choice. The scaling and squaring based on

exponential integrators (ss ei), grounded on equation (3),

has very similar accuracy of the scaling and squaring based

on approximated exponential integrators (ss aei), with a

much higher computational cost.

4.2. Segmentation propagation accuracy test

We compared the performance of the open-source

NiftyReg registration framework with a second version im-

plemented to compute the Lie exponential with scaling and

squaring based on approximated exponential integrator in

a segmentation propagation test. The obtained propagated

segmentations originating from a dataset of 35 scans from

the Neuromorphometric project presented in section 3 as

real case dataset 2, were compared to the ground truth us-

ing the Dice similarity coefficient (DSC) as a measure of

overlap for each segmented label. The results were not sta-

tistically different when using the original or the modified

version of NiftyReg (p-value 0.99, DSC 0.590.03). This is

likely to be a consequence of the fact that in NyftiReg, a
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Figure 5. Inverse consistency, scalar associativity and step-wise error for the real cases data 1, consisting of 10 SVFs obtained from the

longitudinal registration of T1 MRI patients scans. For computational time reasons, SVFs where resticted to a subset of the whole image,

sequences of tests showed this choice does not affect the trend of the these results. In each graph, the methods ss ei, ss aei are almost

coincident.

conservative number of step is used, leading the both algo-

rithms converging to a very similar field.

4.3. Inverse consistency, scalar associativity and
stepwise error

Three validation methods that do not require the avail-

ability of a ground truth are the inverse consistency, the

scalar associativity and the step-wise error.

The inverse consistency error of a given SVF u for the

numerical approximation of the Lie exponential ẽxp is com-

puted as: E = 1
2

(
‖ẽxp(u) ◦ ẽxp(−u)− Id‖+ ‖ẽxp(−u) ◦

ẽxp(u)− Id‖
)

where the norm considered is the Eulcidean

norm performed in the space of vector fields. The scalar as-

sociativity exploits the one parameter subgroup property to

evaluate the performance of the computation of ẽxp. Given

a, b, c such that a+ b+ c = 1, the composition of Lie expo-

nentials exp(au) ◦ exp(bu) ◦ exp(cu) is theoretically coin-

cident with exp(u) and the normed differences in the com-

putations measures the lack of accuracy of the numerical

integrator and the resampling error. For the shown experi-

ments we selected a = 0.3, b = 0.3, c = 0.4. Small vari-

ations in this choice do not impact significantly the results.

The step-wise error is computed here as the Euclidean norm

of the difference between the exponential performed with

i+1 steps and the exponential performed with i steps, with

i = 3, ..., 20. Figure 5 shows the results obtained for the

inverse consistency, scalar associativity and step-wise error

of seven relevant methods for the real dataset 1 presented

in section 3. Due to the high computational cost of these

computation results are obtained from 2d randomly selected

axial slices of the SVFs, in central regions. The same ex-

periment with 3d dataset randomly generated provided the

same relative difference for each method. We observe that

ss ei and ss aei have similar accuracy performance in both

the inverse consistency, the scalar associativity and the step-

wise error. Method euler aei has similar trend to the Euler

method but converges faster to the asymptotic error. For

the scalar associativity the distinction between the methods

based on the forward composition and the squared compo-

sition is translated in two different asympthotic behaviour.

5. Conclusions and Perspectives

We have proposed to combine the exponential integrator

methods with the generalized scaling and squaring frame-

work to produce a novel approach to approximate the Lie

exponential. Three algorithms, called scaling and squar-

ing based on exponential integrators, scaling and squaring

based on approximated exponential integrators and scaling

and composing based on approximated exponential inte-

grators, have been developed and compared with respect

to their accuracy and computational cost, both on synthetic

and clinical data.

From this preliminary investigation, the generalized scal-

ing and squaring based on approximated exponential inte-

grator appears to be a valid alternative to the classic scaling

and squaring commonly used in registration frameworks.

While at the core of the classic version there is the approxi-

mation ẽxp(v)← Id+v computed before a squaring com-

position, the scaling and squaring based on approximated

exponential integrators, here proposed, is based on approx-

imating ẽxp(v) with Id + v + 1
2 Jvv. We observe that this

approximation, in case the SVF is not scaled before its ap-

plications, coincides with a second order truncation of the

Lie series integrators [9, 10] where v2 is computed as the di-

rectional derivative of v over its components. This method

has been reported in [6] to yield poor results in the case of

large deformations, but it is used in this paper with small
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velocity fields thanks to the scaling step. In addition, the

original proof of its convergence was proposed for complex

holomorphic functions, while an extension to the case of

SVFs is not known to the authors.

Experiments in this work are restricted to stationary ve-

locity field, but the Euler method based on exponential in-

tegrators can be easily extended to deal with non-stationary

velocity fields. Moreover, the approach here proposed did

not fully exploited the vast possibilities provided by the ex-

ponential integrators. Other algorithms, such as the ET-

DRK4 [12], certainly deserve to be taken into account for

further investigations in diffeomorphic image registration.

Acknowledgments

Sebastiano Ferraris is supported by the EPSRC-funded UCL

Centre for Doctoral Training in Medical Imaging (EP/L016478/1)

and Doctoral Training Grant (EP/M506448/1). Pankaj Daga was

funded through an Innovative Engineering for Health award by

Wellcome Trust [WT101957]; Engineering and Physical Sciences

Research Council (EPSRC) [NS/A000027/1]. Marc Modat is sup-

ported by the UCL Leonard Wolfson Experimental Neurology

Centre. Tom Vecauteren is supported by an Innovative Engi-

neering for Health award by the Wellcome Trust [WT101957];

Engineering and Physical Sciences Research Council (EPSRC)

[NS/A000027/1] The MIRIAD dataset is made available through

the support of the UK Alzheimer’s Society (Grant RF116). The

original data collection was funded through an unrestricted educa-

tional grant from GlaxoSmithKline (Grant 6GKC).

References

[1] A. H. Al-Mohy and N. J. Higham. Computing the action of

the matrix exponential, with an application to exponential in-

tegrators. SIAM journal on scientific computing, 33(2):488–

511, 2011.

[2] V. Arsigny, O. Commowick, N. Ayache, and X. Pennec. A

fast and log-euclidean polyaffine framework for locally lin-

ear registration. Journal of Mathematical Imaging and Vi-

sion, 33(2):222–238, 2009.

[3] V. Arsigny, O. Commowick, X. Pennec, and N. Ayache. A

log-euclidean framework for statistics on diffeomorphisms.

In Medical Image Computing and Computer-Assisted

Intervention–MICCAI 2006, pages 924–931. Springer, 2006.

[4] J. Ashburner. A fast diffeomorphic image registration algo-

rithm. Neuroimage, 38(1):95–113, 2007.

[5] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Comput-
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