This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Accurate small deformation
exponential approximant to integrate large velocity fields:
Application to image registration

Sebastiano Ferraris, Marco Lorenzi, Pankaj Daga, Marc Modat and Tom Vercauteren
Translational Imaging Group, Centre for Medical Image Computing,
Wolfson House, 4 Stephenson Way, University College London.

Email: s.ferraris@ucl.ac.uk,

m.lorenziQucl.ac.uk, p.daga@ucl.ac.uk,

m.modat@ucl.ac.uk,

t.vercauteren@ucl.ac.uk

Abstract

One of the basic components of diffeomorphic image reg-
istration algorithms based on velocity fields is the numeri-
cal method used to integrate velocity parameters and obtain
spatial transformations as displacement fields. When the in-
put velocity field does not depend on the time parameter, the
solution is often referred to as the Lie exponential of the ve-
locity field. In this work, we present an integration method
for its numerical computation based both on a generaliza-
tion of the scaling and squaring algorithm and on a class
of numerical integrators aimed to solve systems of ordinary
differential equations called exponential integrators. This
new method led to the introduction of three numerical in-
tegrators, and the subsequent validation are performed on
synthetic deformations and real medical images.

1. Introduction

Diffeomorphisms in medical image registration:
There are multiple medical applications where it is inter-
esting to combine and compare information obtained from
different patients’ images: in longitudinal studies, when a
temporal sequence of medical images of the same subject
is studied, in cross-sectional studies, when images are com-
pared across subjects, and when images are acquired us-
ing different modalities [22]. In brain imaging, for exam-
ple, registration techniques are widely used to correct the
subject motion and, in longitudinal scans, to help in com-
paring and analysing anatomical differences. In the practi-
cal implementations of image registration algorithms, one
of the crucial choice is the set of constraints that reflects
the geometrical properties that are expected to remain un-
changed between scans. A reasonable choice for the set of
spatial transformations modelling continuous deformations
between images, is the group of diffeomorphisms.

Parametrisation of diffeomorphisms: Two main prob-
lems do arise in the practical implementation of diffeomor-
phic image registration frameworks: their parametrization
and the statistical analysis [13]]. A sensible choice to par-
tially solve these technical issues is to parametrize each dif-
feomorphism with its tangent vector field, that makes them
easier to be manipulated, and where the computation of
statistics is simplified. Two possible options are available
according to the dependence of the vector field on the time
parameter.

From time-varying to stationary velocity fields: While
theoretically the parametrisation in the tangent space par-
tially solves the above mentioned problems, difficulties
emerges in its computation. An analytic (or exact) solu-
tion of the differential equation system that provides the re-
lated geometrical transformation of the vector field, is al-
most never available. To approximate it, it is necessarily
to rely on numerical schemes, called integrators, such as
the widely used Euler method or Runge Kutta 4 [7]. These
methods are applied in medical imaging both when deal-
ing with vector fields that are time-dependent (time-varying
velocity field or TVVF) or time-independent (called sta-
tionary velocity fields or SVF). TVVFs appear in diffeo-
morphic image registration as a parametrization model of
the deformations, where the geodesic motion on the dif-
feomorphism group is defined by the Euler-Poincaré equa-
tions [5, 20]. Authors of [3] have indicated that restrict-
ing the parametrization to the SVF, allows to use an al-
gorithm called (classical) scaling and squaring, that is in
general faster than the previously proposed methods. In
[24], a similar algorithm is developed for non-linear station-
ary ordinary differential equations applied to wave propaga-
tion alongside a rigorously error analysis. A comparison of
some of the methods to exponentiate an SVF has been per-
formed in [|6], while SVF-based diffeomorphic image regis-
tration has found successful applications [23[15 17,21 4].
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Contributions: This paper is concerned with the numer-
ical computation of the integrator of SVF, also called Lie
exponential. Its main contribution is the introduction of
a methodological approach based on a combination of the
generalised scaling and squaring proposed in [2] and on the
exponential integrators, developed in the numerical analysis
community, and presented in [[12]].

Paper organization: In the next section we introduce the
relevant theory leading to three numerical integrator al-
gorithms, while formalizing the problem and introducing
some of the available schemes in the state of the art. In
section [3] we present the five datasets used for numerical
experiments, and in section [d] we provide the results of the
new numerical scheme compared with other algorithms.

2. Numerical computations of the exponential
of a Stationary Velocity Field

Stationary and time-varying velocity field: We indicate
by Q C R the image’s domain (d = 2,3 for bi- and tri-
dimensional images), by ¢ : 2 — 2 a diffeomorphic spatial
transformation and by u : Q — R a stationary velocity
field (or tangent vector field).

A diffeomorphism can be obtained from a velocity field
u through a first order ordinary differential equation system
(ODE) of the same dimension of §2:

99 _ w(en),

o $o =1d. 6]

whose solution at t = 1 is indicated with ¢ = ¢1. The
set of diffeomorphisms continuously parametrized by a
time-parameter ¢, indicated by {¢; }:+cr satisfies the one-
parameter subgroup properties: ¢g corresponds to the iden-
tity and ¢y o ¢ = ¢¢45 ([14], p. 102). When the velocity
vector field is time-dependent, the vector field u = u(¢, ¢;),
it is called time-varying velocity field (TVVF), and the pre-
vious ODE becomes %” =u(t, d).

We introduce two examples that will be of particular in-
terest for our purpose: the affine ODE system, in particular
when defined over elements of the Lie algebra of rigid body
transformations of the d-dimensional real space (special Eu-
clidean group SE(d)), and the non-linear ODE system de-
fined by an element of the projective general linear alge-
bra, whose Lie exponentials are the homographies of R¢.
In both cases an analytic solution of the Lie exponential is
available and therefore there is a ground truth to validate the
numerical methods.

Linear and Affine ODE: When the ODE is consid-
ered from a given point x in €, the transformed point
parametrized at the time ¢, given by ¢:(x) is denoted with
x(t) and its time derivative with x(¢). Using this notation,
when u is linear, equation (1)) becomes x(¢) = Lx(t), for
a d x d square matrix L and x(0) = xq initial condition.

The solution of this linear case uses the matrix exponen-
tial: at time ¢ it is provided by x(t) = o (tL)xo where
@o(tL) = >772,(tL)7 /4! is the matrix exponential func-
tion. When the ODE is affine, X(¢) = Lx(t)+r, and the ini-
tial condition is x(0) = 0, then its analytic solution is given
by x(t) = ty1(tL)r, where 1 (tL) is the shifted Taylor ex-
pansion of the exponential given by Z;i(](tL)j/(j + 1!
([11] p. 10). In case the initial condition is not cen-
tred in the origin, is it possible to translate the coordinate
frame by y(t) := x(t) — x(0), so that y(0) = 0 and
x(t) = y(t) + x(0). The affine ODE can be written as

][5 e e

with initial condition [y (0) 1]7 = [0 1]7. Its analytic so-
lution is given by

RO (A ) A

while using 7, and in Euclidean coordinates, is
x(t) = x(0) + tp1 (tL)(r + Lx(0)) . 4)

The numerical computation of ¢ and ¢ is an open field of
research, and a comparison of the commonly used methods
can be found in [18]]. There are several numerical methods
available to approximate g (A)Xq or 1 (A)r , not involv-
ing any direct computation of ¢y. However, their efficiency
over a simple truncation of ¢, appears only when large ma-
trices are involved (|8 [1} [19]]).

Homography group: The affine case can be extended in
homogeneous coordinates to the homography group. This
second example will provide a class of polynomial ODE,
where an analytic solution is still available as the quotient
of the exponential of the linear matrix in projective coor-
dinates. Indicating with X(¢) the (d + 1)-dimensional vec-
tor x(t) in projective coordinates, where all the components
depends on time, and with H an element of the projective
general linear algebra pgl(d) ((d + 1) x (d + 1) matrices
defined up to a constant), a linear ODE in homogeneous
coordinates can be written as X (t) = HX(t). The deriva-
tive of the Euclidean coordinates x;(t) = X;(t)/Xa+1(t),
is given by the quotient rule

Xi(t) Xayr(t) — Xi(t) Xy (¢)
Xar1(t)?

() = i=1,....d.
(5)

For X441(t) = 1 and X;(t) = z,(t), the ODE can be writ-
ten, as the non-linear system

ii(t) = Hey - [x(8) 17 = 2(t) (Higsn, - [x(t) 1]T()6)
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Figure 1. Scaling and composing scheme, as a generalization of the scaling and squaring. Given a stationary velocity field u, this is first
scaled by a factor of NN, then an appropriate numerical integrator is applied to the scaled u, and its result, indicated with exp(u/N),
is iteratively composed by itself N-times. When exp(u/N) is computed as Id + u/N and the iterative composition is computed by
composition of the previous step with itself, then the algorithm is the classical scaling and squaring proposed in [3]. When the iterative
composition is performed sequentially backward, it is equivalent to the Euler method ([7]] chapter 5).

where H; ) is the i-th row of H. The analytic solution
of the previous non-linear ODE in Euclidean coordinates
can be recovered from the solution in homogeneous co-
ordinates S(t) = ¢o(tH)X(0), for the initial condition
X(0) = [x(0) 1)7. as St.a(t)/Sar1 (2).
Numerical integrators: Any numerical method whose aim
is to approximate the solution of equation () is called nu-
merical integrator. For the general case, the flow of diffeo-
morphism ¢, that solves equation (I)), called Lie exponential
of the velocity field u and is indicated with exp(tu) ([14]],
ch. 5), does not have an analytical solution. To address
this limitation several integrators have been proposed in the
literature to compute a numerical approximation of the Lie
exponential (for example in [7]). Their improvement in ac-
curacy, stability and computational time is an open field of
research: authors of [6] presented a comparison of different
numerical approaches for the integration of SVFs.
Particularly relevant to our purposes are the scaling and
squaring and the Euler method (]3] and [24] where proofs
and bounds on the accuracy of these methods are derived).
Generalized scaling and squaring: The most commonly
used numerical methods to integrate a vector field are based
on the discretization of the time parameter and on the Tay-
lor expansion of the unknown solution (as for example Eu-
ler, Euler modified, Midpoint and Runge Kutta 4). When
dealing with SVFs, the one-parameter subgroup property
of the vector field ¢; = exp(tu) and its direct implication
exp(u/N)N = exp(u) ([14], p. 204) is at the core of the
generalized scaling and squaring numerical methods. Indi-
cating with exp the Lie exponential approximant (any ap-
propriate numerical integrator of the Lie exponential) that
deals with small SVFs, and denoting u/N with v, it fol-
lows

¢1 = exp(u) = (exp(u/N))" ~ (@&p(v))" . (@)

After the scaling of u and the computation of exp, the
result is iteratively composed in order to obtain the so-
lution in the original scale. The final iterative composi-
tion can be performed in 3 ways, called forward compo-
sition, backward composition or, when N = 2™ squared
composition (in [6] respectively forward Euler, composition
method, and scaling and squaring). At the k-th step, the

computation can be performed as exp(v)*+!

k+1

= &xp(v) 0
= &xp(v)* oexp(v) orexp(v)? " =

exp(v)*, exp(v)
é}‘q’o(v)Qk o é}‘(f)(v)Qk. Even if mathematically equivalent,
the squared composition is computationally faster. Authors
of [2] proposed to compute exp(v) with a generic adequate
exponential integrator, as for example the Runge-Kutta 4
method (figure|[T).

Exponential integrators: Another class of numerical in-
tegrators was introduced in 1958 to solve some particular
stiff ODEs for which the numerical integrators based on
the Taylor expansion have not provided reasonable results
[12]. Called exponential integrators, they originates from
the strategy of separating the linear part and the non-linear
part of the tangent vector field. In this paper we exploit this
approach, combined with the generalized scaling and squar-
ing to produce a new numerical integrator method.
Combining generalized scaling and squaring and expo-
nential integrators: The scaling step, as the first step of the
scaling and squaring algorithm, appears to be particularly
convenient when dealing with large deformations between
images. Once the SVF is reduced in scale, it is possible to
integrate it, separating the linear from the non-linear part,
following the exponential integrator methodology. After
scaling u to v = u/N and changing the coordinate frame
to have the initial condition centred in the origin, equation
becomes y(t) = v(y(t) + x(0)). Separating the linear
from the non-linear part with the Taylor series expansion of
v around x(0) in x(t), the ODE becomes:

Y(t) =v(y(t) +x(0)) = vo + Jv,¥(t) + No(¥(t)), (8)

where v(x(0)) is written as vq for brevity and J, is the
Jacobian matrix. The term N, is a non-linear operator ob-
tained subtracting the linear part of the the SVF computed
with the Taylor expansion of v in x(t) around x(0):

No(y (1) = v(y(t) +x(0)) — (vo + Ty, y(t) . ()

It follows that NV, (y(0)) = 0 and Ny (y(t)) € O(y(t)?)
for x(t) — x(0), or equivalently ¢ — 0.

Considering only the linear part, it is possible to ap-
ply o, as proposed in equation ([3), obtaining the solution
x(t) as the product of the matrix ¢q(t[Jy,, vo;0,0]) times
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Figure 2. Visual description of the data set used in the experiments. (a) Axial section of a velocity field generated by element of the rigid

body transformation of the space with rotation randomly chosen in the interval (—%, §) and with the centre randomly selected in the
field of view. An analytic solution of the ODE is available for any choice of rotation and translation. (b) Axial section of a velocity field
generated by an homography H scaled according to the dimension of the image, such that its matrix Logarithm has real entries and the
last row of H multiplied by its column is positive. For this dataset an analytic solution is available. (¢) Axial section of an SVF with
values randomly generated from a normal distribution with o = 5 and smoothed with a Gaussian filter of ogr = 2. A wide number of
samples of any dimension can be quickly generated, but there is no analytic solution available. (d) SFV obtained from the registration of

two longitudinal weighted MR brain images from MIRIAD dataset.

[0,1]T. Since this choice is computationally expensive the
function 1, as proposed in equation (@), provides a sec-
ond option that reduces the computational time. With this
choice, we obtain: x(t) = x(0)+t¢1 (tJy, ) Vo . When deal-
ing with sufficiently small time-step, the Jacobian is close
to the identity and an additional term proportional to 1‘2, .
did not provide any sensible improvement in the numerical
results. For this reason ¢; can be truncated at its second
order:

2
2
In conclusion, an approximation of the solution of the lin-

earised equation (), after the scaling step, can be written
as

x(t) =x+tvo + =Jy,vo + O(t12 vo) . (10)

__ 21y
exp(tv)(x) := x + tvg + T“VO ,

with asympthotic error O(y () + 312 vq), t — 0 that
arises from the truncation of ¢y and from the error intro-
duced when neglecting the non-linear part.

According to the choice of the exponential approximant
exp, to the truncation of 1 and to the iterative composition
(¢1/ ~)Y, the method proposed can be implemented with
three possible algorithms:

Y

1. Scaling and squaring based on exponential integrators
(ss_ei): exp is computed approximating the exponen-
tial of the matrix [Jy,, vo;0, 0] (equation ) and the
composition is computed by squaring.

2. Scaling and squaring based on approximated exponen-
tial integrators (SS_aei): exp is computed by truncat-
ing ¢1 (equation (TI)), with ¢ = 1) and the composition
is computed by squaring.

3. Scaling and composing based on approximated expo-
nential integrators (euler_aei) exp is computed by
truncating ¢ (equation (TI)), with ¢ = 1) and the com-
position is computed with forward integrations.

The remaining part of this paper is devoted to the validation
and the comparison of these algorithms with the state of the
art.

3. Dataset Descriptions

Synthetic dataset 1: The first dataset consists of 50 linear
velocity fields sampled on a regular grid of size 60 x 60 x 60
generated by elements of the Lie algebra se(3) of the rigid
body transformations of the d dimensional space ([[14], p.
191, 214). Rotations are randomly chosen in the interval
(—%, ) and with the centre randomly selected in the field
of view. Studying these linear ODE:s is particularly relevant:
a closed form of the analytic solution ¢ = exp(v) is avail-
able, therefore results obtained from numerical integrators
can be compared with a ground truth.

Synthetic dataset 2: The SVFs belonging to the second
dataset consists of 50 SVFs sampled on a regular grid of
size 60 x 60 x 60 and generated by homographies in the
projective linear group introduced in section [2] Each ho-
mography H is a (d+1) x (d+ 1) random matrix whose el-
ements are sampled from a Gaussian distribution with stan-
dard deviation 1 and scaled by a factor of 60. To avoid
foldings, degenerate cases and to avoid the exponential ma-
trix to have complex entries, two additional constraints are
added: the matrix logarithm of H must have real entries
and each row of 4 when multiplied by any of its columns
always provides a positive number. Despite the fact that the
corresponding ODE is non-linear, the analytic solution of
the Lie exponential is available.
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Synthetic dataset 3: In the third dataset, 50 stationary
velocity fields are directly generated on a grid of size
60 x 60 x 60 as random values from a normal distribution
with o, = 5 and smoothed with a Gaussian filter with
ogt = 2. Since the Lie exponential does not have any ana-
lytic solution, a numerical benchmark is chosen among the
results of the implemented numerical integration methods.
Real cases data 1: This dataset consists of 10 SVFs from
longitudinal registrations performed with the last version of
NiftyReg (with default parameters) [17] of T1 MRI images
collected from the MIRIAD dataset [[16]].

Real cases data 2: To compare the classical scaling and
squaring with the approximated exponential integrators,
a segmentation propagation is performed 35 scans a
manually segmented, as provided by Neuromorphometrics
for the MICCAI 2012 Grand Challenge on Label Fusion
https://masi.vuse.vanderbilt.edu/workshop2012/index.php
/Challenge_Details. The pairwise registrations of the 35
selected images resulted in 1190 propagated segmentations
for each considered algorithm.

Registrations are performed using NiftyReg and the ac-
curacy is measured as the pixelwise sum of the squared
relative difference between the analytic solution (when
available) or the chosen numerical benchmark. The com-
putational time is measured on a Mac book pro 2014
16Gb 1600 MHz DDR3. The python code implemented
to produce the images and elaborate the data is publicly
available on the authors’ repository https://github.com/gift-
surg/lie_exponential.

4. Experiments and Validations

This section presents the results obtained with the three
proposed algorithms. Their performance are compared with
other numerical integrators available in the literature.

4.1. Accuracy and computational time comparison

Figure [3|shows the outcome of an experiment performed
with the synthetic dataset 2 described in section [3] The
mean errors are computed as the Euclidean norm of the
difference of the displacement fields obtained from the nu-
merical computation of the Lie exponential with different
algorithms.

Figure 4] shows the same analysis for four datasets and
for a choice of significant numerical methods. In (a), the
sampled SVFs belong to the synthetic dataset 1: we observe
that for all the methods that are not based on the exponen-
tial integrators, increasing the number of steps induces a
decrease in the error. Since they provide exact solutions
for the linear part of the SVFs, the methods ss_ei, ss_aei
and euler_aei are more accurate at the first or second step
for this particular case of linear ODEs. Resampling error is
however accumulated with each additional step. In (c¢) SVFs

10" F
+—+ SS
+ =+ ss_aei
— ss_ei
o ss_rk4
10 : .
midpoint
—_ euler
I euler_mod
E euler_aei
% 10T | heun
] heun_mod
E rk4
o
o
5107t
=]
o]
(5]
=
10° b
10° 10! 10°
Mean time - log scale (sec)
Figure 3. The three numerical methods to approximate Lie

exponential proposed (scaling and squaring based on exponen-
tial integrators ss_ei, scaling and squaring based on approxi-
mated exponential integrators Ss_aei and scaling and compos-
ing based on approximated exponential integrators euler_aei) are
compared in error and computational time for a different number
of steps, with the classical scaling and squaring (Ss), the midpoint
method (midpoint), the Euler method (euler), the Euler modified
method (euler_mod), the Heun method (heun), the Heun modi-
fied method (heun_mod) and the explicit Runge-Kutta 4 method
(rk4), described in [3l [7]. The additional method ss_rk4 com-
bines the scaling and squaring framework and compute exp with
rk4. The number of steps for each method is selected in the list
[1,2,3,4,5,6,7,8,9,10, 15,20, 25, 30] to a dataset of 50, sam-
pled on a regular grid of size 60 x 60 x 60 and generated by ho-
mographies. The error is computed as the mean of the voxelwise
normalized Euclidean norm of the difference between the defor-
mation obtained with the numerical algorithm and the available
analytic solution.

belong to the synthetic dataset 3 (non-linear random gener-
ated and smoothed with a Gaussian filter) and in (d) SVFs
are from real patients’ images, belonging to the real cases 1
dataset. In (b), the same non-linear dataset showed in figure
[]and generated by homographies, is proposed again, to em-
phasise the differences between the four datasets described
in figure 2] The classical scaling and squaring is, in each
case, more accurate than the Euler method, while it is sys-
tematically outperformed by the scaling and squaring based
on approximated exponential integrators (SS_aei). When
SVFs are sampled from the synthetic dataset 3 and real case
1 (figuref](c) and (d)), the Runge Kutta 4 with fixed number
of steps equals to 7, is used as numerical benchmark, having
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Figure 4. Computational time and errors are compared as in figure [3] for each of the datasets presented in figure 2] The meth-
ods selected are the classical scaling and squaring (SS), the generalized scaling and squaring with approximated exponential integra-
tors (ss_aei), with exponential integrators (Ss_ei), the scaling and squaring based on Runghe-Kutta 4 (ss_rk4), the Euler method
(euler) and the Euler method based approximated exponential integrators (euler_aei). The number of steps are selected in the list
[1,2,3,4,5,6,7,8,9,10,15, 20,25, 30] for figure (a), (b), (c), and with the two additional steps [35, 40] for figure (d). Three dataset
of 50 SVFs generated with elements in the Euclidean group SE(3) (a), with homographies (b) and using Gaussian filters (c), are sampled
on a regular grid of size 60 x 60 x 60. In (d) the selected dataset consists of 10 SFV obtained registering two longitudinal weighted MR
brain images. When the ground truth is not available (¢, d) , the selected numerical benchmark is the Runge Kutta 4 method computed with
7 steps, since it provided the lowest error in the exponentiating SVFs generated by homographies (see figure [3) the computational time of
the benchmark is in the order of 10" seconds for the synthetic generated SVFs (c), and in the order of 10? seconds for the real patients
images (d).

had the best performance non-linear SVFs showed in figure 4.2. Segmentation propagation accuracy test

Bl when a ground truth was available. The optimal accuracy
performance of the generalized scaling and squaring with
Runge-Kutta 4 is a consequence of the similarity between
this method and the chosen numerical benchmark; the in-
crease in accuracy of the scaling and composing based on > ! ;
approximated exponential integrators (euler_aei) is biased a segmentation propagation test. The obtained propagated
as well by this choice. The scaling and squaring based on segmentations originating fr(?m a dataset Of_ 35 scans from
exponential integrators (ss_ei), grounded on equation (3], the Neuromorphometric project presented in section [3] as
has very similar accuracy of the scaling and squaring based real case dataset 2, were compared to the ground truth us-

on approximated exponential integrators (Ss_aei), with a ing the Dice similarity coefficient (DSC) as a measure of
much higher computational cost. overlap for each segmented label. The results were not sta-

tistically different when using the original or the modified
version of NiftyReg (p-value 0.99, DSC 0.590.03). This is
likely to be a consequence of the fact that in NyftiReg, a

We compared the performance of the open-source
NiftyReg registration framework with a second version im-
plemented to compute the Lie exponential with scaling and
squaring based on approximated exponential integrator in
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Figure 5. Inverse consistency, scalar associativity and step-wise error for the real cases data 1, consisting of 10 SVFs obtained from the
longitudinal registration of T1 MRI patients scans. For computational time reasons, SVFs where resticted to a subset of the whole image,
sequences of tests showed this choice does not affect the trend of the these results. In each graph, the methods Ss_ei, ss_aei are almost

coincident.

conservative number of step is used, leading the both algo-
rithms converging to a very similar field.

4.3. Inverse consistency, scalar associativity and
step-wise error

Three validation methods that do not require the avail-
ability of a ground truth are the inverse consistency, the
scalar associativity and the step-wise error.

The inverse consistency error of a given SVF u for the
numerical approximation of the Lie exponential exp is com-
puted as: E = 4 ([[exp(u) o &xp(—u) — 1d]| + [|exp(—u) o
exp(u) — Id||) where the norm considered is the Eulcidean
norm performed in the space of vector fields. The scalar as-
sociativity exploits the one parameter subgroup property to
evaluate the performance of the computation of exp. Given
a, b, c such that a + b+ ¢ = 1, the composition of Lie expo-
nentials exp(au) o exp(bu) o exp(cu) is theoretically coin-
cident with exp(u) and the normed differences in the com-
putations measures the lack of accuracy of the numerical
integrator and the resampling error. For the shown experi-
ments we selected a = 0.3, b = 0.3, ¢ = 0.4. Small vari-
ations in this choice do not impact significantly the results.
The step-wise error is computed here as the Euclidean norm
of the difference between the exponential performed with
1+ 1 steps and the exponential performed with ¢ steps, with
1 = 3,...,20. Figure |§| shows the results obtained for the
inverse consistency, scalar associativity and step-wise error
of seven relevant methods for the real dataset 1 presented
in section 3] Due to the high computational cost of these
computation results are obtained from 2d randomly selected
axial slices of the SVFs, in central regions. The same ex-
periment with 3d dataset randomly generated provided the
same relative difference for each method. We observe that
ss_ei and ss_aei have similar accuracy performance in both

the inverse consistency, the scalar associativity and the step-
wise error. Method euler_aei has similar trend to the Euler
method but converges faster to the asymptotic error. For
the scalar associativity the distinction between the methods
based on the forward composition and the squared compo-
sition is translated in two different asympthotic behaviour.

5. Conclusions and Perspectives

We have proposed to combine the exponential integrator
methods with the generalized scaling and squaring frame-
work to produce a novel approach to approximate the Lie
exponential. Three algorithms, called scaling and squar-
ing based on exponential integrators, scaling and squaring
based on approximated exponential integrators and scaling
and composing based on approximated exponential inte-
grators, have been developed and compared with respect
to their accuracy and computational cost, both on synthetic
and clinical data.

From this preliminary investigation, the generalized scal-
ing and squaring based on approximated exponential inte-
grator appears to be a valid alternative to the classic scaling
and squaring commonly used in registration frameworks.
While at the core of the classic version there is the approxi-
mation exp(v) < Id + v computed before a squaring com-
position, the scaling and squaring based on approximated
exponential integrators, here proposed, is based on approx-
imating exp(v) with Id + v + 1J,v. We observe that this
approximation, in case the SVF is not scaled before its ap-
plications, coincides with a second order truncation of the
Lie series integrators [9}[10] where v? is computed as the di-
rectional derivative of v over its components. This method
has been reported in [6] to yield poor results in the case of
large deformations, but it is used in this paper with small
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velocity fields thanks to the scaling step. In addition, the
original proof of its convergence was proposed for complex
holomorphic functions, while an extension to the case of
SVFs is not known to the authors.

Experiments in this work are restricted to stationary ve-
locity field, but the Euler method based on exponential in-
tegrators can be easily extended to deal with non-stationary
velocity fields. Moreover, the approach here proposed did
not fully exploited the vast possibilities provided by the ex-
ponential integrators. Other algorithms, such as the ET-
DRK4 [12], certainly deserve to be taken into account for
further investigations in diffeomorphic image registration.
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