
Discovering Objects of Joint Attention via First-Person Sensing

Hiroshi Kera

The University of Tokyo

Tokyo, Japan

kera@iis.u-tokyo.ac.jp

Ryo Yonetani

The University of Tokyo

Tokyo, Japan

yonetani@iis.u-tokyo.ac.jp

Keita Higuchi

The University of Tokyo

Tokyo, Japan

khiguchi@iis.u-tokyo.ac.jp

Yoichi Sato

The University of Tokyo

Tokyo, Japan

ysato@iis.u-tokyo.ac.jp

Abstract

The goal of this work is to discover objects of joint at-

tention, i.e., objects being viewed by multiple people using

head-mounted cameras and eye trackers. Such objects of

joint attention are expected to act as an important cue for

understanding social interactions in everyday scenes. To

this end, we develop a commonality-clustering method tai-

lored to first-person videos combined with points-of-gaze

sources. The proposed method uses multiscale spatiotem-

poral tubes around points of gaze as a candidate of ob-

jects, making it possible to deal with various sizes of ob-

jects observed in the first-person videos. We also intro-

duce a new dataset of multiple pairs of first-person videos

and points-of-gaze data. Our experimental results show

that our approach can outperform several state-of-the-art

commonality-clustering methods.

1. Introduction

Shifts in attention are one of the fundamental behaviors

during everyday social interactions. For instance, we look

at various targets of objects including speakers, handouts,

and a projector screen during a meeting in an office. When

multiple people cooperatively assemble something big, they

continuously pay attention to various objects such as parts

to be assembled and tools in their hands. To understand

such interactions, we need to find objects jointly viewed by

multiple people. Such objects of joint attention reflect what

people attend to from moment to moment and can be used

as a cue to understand group activities [8, 28]. In the context

of computer-supported cooperative work, the ability of ex-

tracting objects of joint attention allows us to evaluate how

systems mediate collaborative work of people [27].

In this work, we argue that one promising approach to
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Figure 1. Objects of joint attention are discovered in multiple first-

person videos recorded during interactions (highlighted frames).

Points of gaze of camera wearers are annotated by crosses.

extract objects of joint attention is to use wearable cameras

and eye trackers mounted on the head of people during in-

teractions. First-person points-of-view videos recorded by

such cameras can clearly capture what people see and thus

can be used for action recognition [6, 22] and activity sum-

marization [2, 4, 12, 15, 28]. More importantly, points-of-

gaze data measured by an eye tracker often illuminate the

parts of the wearer’s field of view that receive attention.

This enables localizing important objects spatially and tem-

porally [7, 8, 24, 28, 29].

Motivated by these advantages of wearable cameras and

4321

7



eye trackers, we introduce a new task of discovering objects

of joint attention from multiple first-person videos recorded

with additional inputs from eye trackers. We illustrate some

results from our experiments in Figure 1. Using points-

of-gaze data of each camera wearer, we split first-person

videos into a shot sequence by detecting eye movements

from one object to another. Then, we find shots that con-

tain objects with similar appearances across multiple videos

(highlighted frames in the figure).

One important problem in discovering objects of joint

attention is how to define appropriately a region in first-

person videos, from which we extract features to describe

objects being viewed. While some studies use regions of a

specific fixed size around points of gaze [8, 13, 28], com-

paring directly between fixed-size regions does not always

work well due to the variability in the size of objects in first-

person videos. In our everyday life, we look from a small

tool in our hands to a large poster on the wall. The size of

these objects changes even more drastically in first-person

videos because the objects can be seen from different dis-

tances. As a result, features extracted from fixed-size re-

gions can only describe a limited part of objects or are af-

fected by a large amount of irrelevant background regions.

This makes it difficult to temporally segment videos into

shots reliably based on objects of focus and to compare the

objects among shots.

We introduce a multi-scale approach for object-feature

extraction to address this problem. In the proposed method,

visual features are extracted around points of gaze with sev-

eral different areas to take into account the size variability

of objects. These visual features are further used to split an

input video into shots based on several different affinity cri-

teria. This approach allow us to generate as a candidate of

objects, several different scales of spatiotemporal “tubes”

around points of gaze, where some of them are expected

to match closely actual regions of objects being viewed. A

group of tubes with similar features are discovered for each

scale via unsupervised commonality clustering. Discovery

results are finally integrated across scales to find various

sizes of objects of joint attention reliably.

The main contributions of this paper are summarized as

follows: (1) we introduce a new task of discovering objects

of joint attention from first-person videos; (2) We describe

a method we developed to discover objects of joint attention

using multiscale spatiotemporal tubes as object candidates;

and (3) we present a novel dataset containing multiple pairs

of first-person videos and points of gaze data to validate the

effectiveness of our approach.

2. Related work

In this section, we review some prior work related to

the task of discovering objects of joint attention from first-

person videos using points of gaze information. Because

wearable cameras and eye trackers have become available

at a reasonable price, first-person vision is now one of the

emerging topics in computer vision. Similar to our work,

Park et al. [18, 19, 20] proposed detecting a social focus

of attention during group interaction using multiple first-

person videos. In their work, the location of social focus

was found as an intersection of people’s viewing directions

computed from 3D camera poses and positions. One impor-

tant problem is that such intersections may not correspond

to a true social focus. For instance, two people’s viewing

directions can intersect while they are looking at different

things behind the intersection. In addition, the use of 3D

camera poses and positions often requires a 3D model of

the scene that may not always be available.

Points-of-gaze data act as a salient cue to boost various

computer vision tasks. Because points of gaze are indicative

of important parts in images, they are used to recognize ob-

jects [29] and actions [7, 24] or to summarize videos by de-

tecting important shots [28]. To the best of our knowledge,

this work is the first to use multiple points-of-gaze sources

to discover important objects across multiple videos.

The ability to discover commonalities across multiple

images or videos has also been adopted in a variety of

computer vision tasks, such as object co-segmentation [10,

23, 30], co-localization [25], and temporal commonality

discovery [5]. Perhaps the most relevant work presented

is common-interest person detection from multiple first-

person videos [14]. Accurate human detection is required

to generate candidates of co-interest people. In comparison

to this approach, we make use of points-of-gaze informa-

tion to generate candidates of common objects and do not

require any object detectors. This enables co-localizing any

categories of objects in a scene.

3. Our method

Our method accepts as input N pairs of first-person

videos and points-of-gaze data captured by each of the N

people during interactions and outputs time intervals where

the same object is viewed in all of the N videos (i.e., an

object of joint attention). More formally, we consider a

time sequence T = [1, 2, . . . , T ]. Each time t 2 T has

N image frames V1,t, . . . , VN,t and two-dimensional points

of gaze g1,t, . . . , gN,t 2 R
2. The goal of this work is

to obtain a time interval J ⇢ T where all image frames

{Vn,t | t 2 J , n 2 [1, 2, . . . , N ]} contain instances of the

same object around the corresponding point of gaze gn,t.

In Section 3.1, we first explain generating multiscale

spatiotemporal tubes from videos to describe objects being

viewed. Then, in Section 3.2, we describe how to perform

unsupervised commonality clustering on the tubes to dis-

cover time intervals where joint attention is likely to occur

for each scale. Finally, we introduce a voting scheme to

integrate the discovery results across scales in Section 3.3.
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Figure 2. Concept figure of multiscale spatiotemporal tubes. Col-

ored time axes represent time intervals split with several pairs of

a radius and an affinity threshold. (A, B) Smaller radius of tubes

is more appropriate to extract features from the object on the left

side; (C) Larger radius and longer length are needed to cover the

object on the right.

3.1. Generating Multiscale Spatiotemporal Tubes

When we see objects, points of gaze are often distributed

over important parts of the objects. If we properly split

videos into a sequence of shots (sub-sequences of image

frames) by detecting eye movements from one object to

another, we can then extract visual features from regions

around points of gaze to describe objects of focus in each

shot. However, the size of regions that match closely to

important parts of objects should differ depending on the

apparent object sizes in videos. We need to define a proper

spatial range around points of gaze for feature extraction so

that we can reliably segment videos into shots and compare

instances of objects across multiple videos.

We address this problem by generating spatiotemporal

tubes along points of gaze at various scales from which

we extract features of objects being viewed. As illustrated

in Figure 2, we expect that an appropriate combination of

spatial and temporal ranges will cover important parts of

objects correctly. Let us denote by F(Vn,t) a set of lo-

cal features extracted from image frame Vn,t. We consider

a set of spatial ranges R = {r1, . . . , rNr
} that control a

radius of spatiotemporal tubes. For each r 2 R, a fea-

ture vector of what people see in Vn,t is then described by

s
(r)
n,t = H({f 2 F(Vn,t) | kl(f) − gn,tk < r}), where

l(f) 2 R
2 is a spatial location that the feature f is ex-

tracted from, and H is a certain feature-aggregation opera-

tor that takes as an input a set of local features, such as a

naive histogram and Fisher vector coding [21].

A time interval where spatiotemporal tubes are defined is

given by temporally segmenting videos into shots based on

a frame-wise feature s
(r)
n,t with multiple thresholds. Specif-

ically, we compute affinities between consecutive frames

s
(r)
n,t−1, s

(r)
n,t and find shot boundaries where the affinities are

below one of a set of affinity thresholds θ 2 Θ . These mul-

tiple thresholds allow us to segment videos into shots based

on objects of focus while considering a variety of similari-

ties among multiple objects in a scene.

As a result, we obtain a sequence of spatiotemporal tubes

for each video given a certain combination of spatial range

and affinity threshold parameters. We describe the time in-

terval of k-th tube by j
(pn)
n,k ⇢ T , where pn = (rn, θn) 2

R ⇥ Θ is a specific combination of parameters used for

extracting features from the n-th video. Finally, visual fea-

tures of objects being viewed in the k-th shot are extracted

by aggregating features in the tube: s
(pn)
n,k = H({f 2

F(Vn,t) | kt 2 j
(pn)
n,k , l(f)− gn,tk < rn}).

3.2. Commonality Clustering on Tubes

To discover objects of joint attention, we perform un-

supervised commonality clustering on feature vectors s
(pn)
n,k

extracted from spatiotemporal tubes. In what follows, we

particularly focus on the two-person case (i.e., N = 2) for

the sake of simplicity. We will discuss in Section 3.3 how

our method can be extended to more than two-person cases.

For each combination of scale parameters p1, p2, we aim

to find a “co-cluster” of spatiotemporal tubes that have sim-

ilar features. To this end, we first define an affinity matrix

between tubes across a pair of videos.

A =

✓

O C

C> O

◆

, (1)

where the (i, j)-th entry of the matrix C is given by the

affinity between s
(p1)
1,i and s

(p2)
2,j . A concrete affinity func-

tion will be given in Section 3.4. Similar to normalized

spectral clustering [17], we also introduce a degree matrix

D: a diagonal matrix where the i-th diagonal element is

given by the sum of the entries in the i-th row of A. Then, as

described in [4], co-clusters can be obtained via normalized

spectral clustering with the Laplacian matrix L = D − A.

In practice, we perform the two-class clustering and select

one co-cluster whose members have higher affinities. Note

that in a particular situation where objects of joint atten-

tion are observed sparsely during interactions, the maximal-

biclique-based approach proposed in [4] can also be ap-

plied.

Given the co-cluster of tubes for scale parameter com-

bination p1, p2, the time interval where an object of joint

attention is likely to be observed, J (p1,p2) ⇢ T , is deter-

mined as follows. Let us denote by Kn a set of tube in-

dices in n-th video belonging to the discovered co-cluster.
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Recall that the k-th tube of n-th video is defined in inter-

val j
(pn)
n,k ⇢ T . The interval J (p1,p2) is then obtained by

finding all the intersections of intervals between a pair of

videos:

J (p1,p2) = ([k2K1j
(p1)
1,k ) \ ([k2K2j

(p2)
2,k ). (2)

Note that co-clusters discovered using the affinity A in

Eq. (1) always contain tubes from both of the two videos.

If no intersections are found in Eq. (2) at a certain combi-

nation of scales (p1, p2), the result from that scale setting is

just ignored in the subsequent voting scheme.

3.3. Voting across Multiple Scales

Finally, we integrate discovered time intervals J (p1,p2)

across all the scale combinations R⇥Θ to discover objects

of joint attention with the variability in their size. To this

end, for each scale setting, we weigh how likely the discov-

ered co-cluster of spatiotemporal tubes includes objects of

joint attention. More specifically, we design a confidence

score c(p1,p2) computed by the sum of affinities among spa-

tiotemporal tubes corresponding to j
(pn)
n,k ⇢ J (p1,p2). This

score increases when tubes in the co-cluster are more simi-

lar.

The confidence scores are then summed up per frame

t 2 T to construct a confidence histogram. This histogram

is aimed at describing in which time intervals we observe

more confident co-clusters:

ct =
X

p1,p22R⇥Θ

c(p1,p2)δ(t,J (p1,p2)), (3)

δ(t,J (p1,p2)) =

(

1 t 2 J (p1,p2)

0 otherwise.
(4)

The time interval including objects of joint attention J is

derived by binarizing c1 . . . , cT with a certain threshold.

This voting scheme can be extended to cases where more

than two people are present, as follows. We first conduct the

commonality clustering presented in Section 3.2 for all the

pairs of videos. Then, the confidence histogram is built by

aggregating confidence scores over multiple scales as well

as multiple video pairs. Intuitively, the more people see the

same object in a certain frame t, the higher the score is given

to ct. We show in Section 4.4 how this voting scheme works

on three-person cases.

3.4. Implementations

Here, we briefly describe some important implementa-

tions of our method. More details are described in the ap-

pendix. To describe the appearances of objects, we use

dense RootSIFT descriptors [1] encoded by the improved

Fisher vector [21] and HSV color histograms. Furthermore,

we take into account time intervals to avoid matching tubes

observed at a completely different time. A time interval of

a shot j
(pn)
n,k is represented by a T -dimensional feature vec-

tor, whose t-th element takes 1

|j
(pn)
n,k

|
if t 2 j

(pn)
n,k (where

|j
(pn)
n,k | is the number of image frames in j

(pn)
n,k ) and other-

wise zero. All these features are aggregated to form feature

vectors s
(pn)
n,k . Note that we used only the color histograms

for per-frame features s
(pn)
n,t in video-shot segmentation be-

cause it performed better.

Another important implementation is the affinity func-

tion used in the video-shot segmentation and commonality

clustering. We define the affinity between two features s1
and s2 by exp (−ρks1 − s2k), where k · k is the Euclidean

distance and ρ is set to the median of all distance values.

4. Experiments

To evaluate the effectiveness of our approach, we built a

new dataset containing multiple pairs of first-person videos

and points-of-gaze data. The experiments demonstrate that

our approach can outperform several state-of-the-art com-

monality clustering methods on the task of discovering ob-

jects of joint attention in various interaction scenes.

4.1. Data Collection

Our new dataset consists of 29 sequences of two- and

three-person interaction scenes recorded in three different

environments. Each subject was equipped with a head-

mounted camera and an eye tracker to record first-person

videos and points-of-gaze data collectively. To the best

of our knowledge, this dataset is the first to use multiple

points-of-gaze sources in first-person vision tasks.

During each recording, subjects were asked to establish

joint attention on various objects such as books, projector

screens, and faces, like they do in their everyday interaction.

Specific types of interactions included object exchanges,

pointing by hands followed by shifts in attention, and jointly

looking at a person who came into a room. In two-person

sequences, subjects took one of two formations: side-by-

side (SbS) and face-to-face (FtF). In the SbS sequences,

two subjects sat next to each other where objects of joint

attention were located in front of the subjects. As for the

FtF sequences, subjects were facing each other across from

the objects to be looked at jointly. In the three-person se-

quences, subjects were positioned in a triangle at difference

distances. In the dataset, we have 14 SbS, seven FtF, and

eight triangle sequences.

We used the Pupil Lab eye trackers [11] to record HD-

resolution first-person videos with points-of-gaze data at 30

fps. All videos and gaze data were synchronized manu-

ally. While the length of each sequence varied from 40 to

120 seconds, we downsampled all the videos and points-

of-gaze data to have 500 frames per sequence. This makes
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the length of time-interval feature vectors presented in Sec-

tion 3.4 equal for all the sequences. Each video was down-

sized to 320x180 before feature extraction to reduce com-

putational cost. Eye trackers were calibrated before each

recording session. Missing gaze data due to eye blinks or

tracking failures were filled with linear interpolation.

Each sequence was manually annotated with ground

truth labels of time intervals where all subjects looked at

the same object. More specifically, we annotated a binary

label to the frames based on whether objects of joint atten-

tion were located within a 15-pixel radius around points of

gaze at the 320x180 resolution.

4.2. Evaluation Scheme and Baselines

We calculate the area under ROC curves (AUC scores)

on confidence histograms and binary ground truth labels to

evaluate how accurately our outputs in Eq. (4) can capture

correct time intervals. First, we present a comparison of

our method with some baseline methods on two-person se-

quences (i.e., SbS and FtF). We implemented the following

three methods for the baselines.

Simplified version of our method. To provide evidence

for the effectiveness of using a multi-scale approach, we

implemented the simplified version of our method that used

only a single combination of a spatial radius and an affinity

threshold. In the experiments, we manually selected one

parameter combination for each formation that produced the

highest AUC score.

Temporal commonality discovery. Chu et al. [5] intro-

duced the temporal commonality discovery (TCD) method

to extract a pair of common temporal patterns from two in-

put videos via branch and bound. We performed the TCD

to find a pair of time intervals with similar object-feature

patterns from a pair of videos. We extracted HSV color

histograms and RootSIFT Fisher vectors around points of

gaze as well as a time interval feature vector for each frame.

Similar to the aforementioned simplified version, we manu-

ally selected one radius to extract features that produced the

highest AUC score for each formation.

Co-localization. We also adopted a co-localization

method (COLOC) proposed by Tang et al. [26] as another

baseline. Originally, the COLOC generates object propos-

als for each image and finds a group of proposals that are

similar. Instead of object proposals, we used spatiotempo-

ral tubes for each video. The tubes were constructed and

evaluated in the same way as in the simplified method.

4.3. Results

Figure 3 shows some of the results of our approach. In

each example, subjects were involved in the following in-

Method SbS FtF Avg.

(1) COLOC (r = 15, θ = 50) [26] 0.57 0.50 0.53

(2) COLOC (r = 15, θ = 10) [26] 0.52 0.71 0.61

(3) TCD (r = 50) [5] 0.50 0.48 0.49

(4) TCD (r = 15) [5] 0.48 0.48 0.48

(5) Simplified (r = 50, θ = 10) 0.75 0.47 0.61

(6) Simplified (r = 15, θ = 30) 0.63 0.82 0.73

Ours 0.87 0.79 0.83

Table 1. AUC scores of the proposed and baseline methods. Com-

binations of spatial radius r and affinity threshold θ were manually

selected to provide the highest AUC score in SbS sequences ((1),

(3), (5)) and FtF ones ((2), (4), (6)) in baselines.

teraction: (A) a subject showed a book to the other sub-

ject sitting next to him so that they could read it together;

(B) two subjects sitting side-by-side looked at a green mug

held by another person; (C) a subject looked at a projec-

tor screen and spoke to the other subject to see it; (D) two

subjects saw a teddy bear from different points of view; (E)

two subjects sitting face to face exchanged a book; and (F)

a subject asked the other subject in front to put a block into

a cylindrical box.

We found that higher confidence scores were given to

correct time intervals in many cases. Our method worked

robustly on various sizes of objects from a small mug in (B)

to a large projector screen in (C). We were also able to deal

with cases when the size of object instances were drastically

different, as shown in (D)(E)(F). By using points of gaze to

limit the location of features to be extracted and compared,

we can discover objects of joint attention even when back-

ground scenes are greatly similar across videos, such as in

example (D). This unique property of our approach is unlike

many standard object co-localization and co-segmentation

methods [10, 23, 25, 30] that assume background scenes

are different across images.

We also present quantitative evaluations based on ROC

curves and AUC scores in Figure 4 and Table 1. On av-

erage, our method using multi-scale spatiotemporal tubes

performed the best. Among the baseline methods, the com-

bination of scale parameters (r and θ) that provided the

highest AUC scores were different between SbS and FtF

sequences. This indicates the necessity of considering mul-

tiple scales to cope with various sizes of objects in videos.

4.4. More than Two-Person Cases

Figure 5 shows how our method can work on cases where

three subjects are present in a scene. In example (A), a

teddy bear was passed from one subject to another followed

by a third subject paying attention to the interaction. In (B),

one subject manipulated a box and asked the other subjects

to look at the box. For both cases, our method success-

fully discovered the objects of joint attention, while the size

11
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Figure 3. Confidence histograms and image frames. Time intervals and image frames where objects of joint attention were observed are

highlighted in pink. Green circles denote regions attended by subjects. We selected the radius from the scale pair that gives the highest

confidence score at each time point.

of object instances varied significantly among videos (e.g.,

larger instances in the point of view of the person holding

an object and smaller instances in the other people’s points

of view). The AUC scores on the three-person sequences

were on average 0.74.

4.5. Failure Cases and Possible Extensions

Figure 3 includes some failure cases. Discovering ob-

jects that were barely observed in first-person videos was

difficult (e.g., the book in hands in example (E)). Moreover,

false-positive responses were observed when subjects kept

looking at textureless regions like in (C). Some other fail-

ure cases were present in Figure 6. In example (A), two

subjects looked at objects that had a similar appearance but

that were located in different places. Our method is not yet

able to distinguish such pairs of objects because it relies on

only the visual appearances of a scene. Another case of

false-negative detection is depicted in (B); objects appeared

12
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Figure 4. ROC curves of the proposed and baseline methods

differently across videos due to lighting conditions.

Introducing more sophisticated features such as R-CNN

features [9] to handle higher level information such as ob-

ject classes may ease the issue in (B). Incorporating other

types of features that do not rely on object appearances is

also an interesting extension. When a geometric relation-

ship between head-mounted cameras is possible by prelim-

inarily scanning a scene like [18], we will be able to dis-

tinguish objects placed at a different location. If we partic-

ularly focus on objects in motion (e.g., objects carried by

hands), motion patterns can also be a salient cue [14].

Another interesting extension is to use segmentation

around fixation points [16] or object proposal [3] instead of
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Figure 5. Confidence histograms and image frames. Time intervals

and image frames where objects of joint attention were observed

are highlighted in pink. Circles denote regions attended by sub-

jects. We selected the radius from the scale pair that gives the

highest confidence score at the time point. Green, red, and blue

circles correspond to video pairs of video 1 and 2, video 1 and 3,

and video 2 and 3, respectively.

spatiotemporal tubes. The former extracts objects around

points of gaze by segmentation, while the latter provides

bounding boxes for object-like regions, which both allow

us to avoid the size variability issue while considering clut-

tered backgrounds. However, these approaches may not be

directly applied to our problem because they are not always

good at dealing with non-salient or non-textured objects.

5. Conclusions

In this work, we introduced a novel task of discovering

objects of joint attention in multiple first-person videos. Our

experimental results demonstrated the effectiveness of our

multiscale approach over several state-of-the-art common-
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Figure 6. Confidence histograms and image frames for failure

cases. (A) False-positive detection highlighted in blue and (B)

False-negative detection.

ality discovery methods. Our future work will be to im-

prove feature description and object-candidate generation.

Another important direction is to develop an efficient algo-

rithm to discover objects of joint attention in real time.

A. Implementation Details

Here are some details on our implementations. When

constructing HSV color histograms, we discretized each

color channel into 16 bins and normalized them indepen-

dently. They were then aggregated and normalized again

to form 48-dimensional histogram vectors. For features of

spatiotemporal tubes, we used the histogram vector at the

median frame in each shot. To obtain RootSIFT Fisher vec-

tors, we first applied PCA to SIFT descriptors to have 64

dimensions. The number of GMM components trained for

Fisher vectors was also 64. We adopted the L2 and power

normalizations on the Fisher vectors by following [21].

In video-shot segmentation, we preliminarily applied a

median filter with a kernel size of 15 to a sequence of

affinities to cope with outliers. After the shot segmenta-

tion, we removed some shots whose length was shorter than

15 frames. A set of spatial radius parameters was set to

R = {15, 25, 50} in pixels. Affinity thresholds were ob-

tained by computing 10th, 30th, and 50th percentiles of all

the affinities for each video.
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